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The efficacy of a biological synapse is naturally bounded, and at some resolution, and is discrete at the latest
level of single vesicles. The finite number of synaptic states dramatically reduce the storage capacity of a
network when online learning is consideredsi.e., the synapses are immediately modified by each patternd: the
trace of old memories decays exponentially with the number of new memoriesspalimpsest propertyd. More-
over, finding the discrete synaptic strengths which enable the classification of linearly separable patterns is a
combinatorially hard problem known to be NP complete. In this paper we show that learning with discrete
sbinaryd synapses is nevertheless possible with high probability if a randomly selected fraction of synapses is
modified following each stimulus presentationsslow stochastic learningd. As an additional constraint, the
synapses are only changed if the output neuron does not give the desired response, as in the case of classical
perceptron learning. We prove that for linearly separable classes of patterns the stochastic learning algorithm
converges with arbitrary high probability in a finite number of presentations, provided that the number of
neurons encoding the patterns is large enough. The stochastic learning algorithm is successfully applied to a
standard classification problem of nonlinearly separable patterns by using multiple, stochastically independent
output units, with an achieved performance which is comparable to the maximal ones reached for the task.
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I. INTRODUCTION

The strength of biological synapses can only vary within a
limited range, and there is accumulating evidence that some
synapses can only preserve a restricted number of states
ssome seem to have only twof1gd. These constraints have
dramatic effects on networks performing as classifiers or as
associative memories. Networks of neurons connected by
bounded synapses whose efficacy cannot be changed by an
arbitrarily small amount, share the palimpsest propertyssee,
e.g.,f2–5gd: new patterns overwrite the oldest ones, and only
a limited number of patterns can be remembered. The more
synapses changed on each stimulus presentation, the faster is
forgetting. The loss in synaptic structure caused by fast for-
getting can be avoided by changing only a small fraction of
synapses, randomly chosen at each presentation. Hebbian
learning with stochastic selection permits the classification
and memorization of an extensive number of random uncor-
related patterns, even if the number of synaptic states is re-
duced to twof4,6g. However, additional mechanisms must be
introduced to store more realistic patterns with correlated
components.

The stochastic algorithm we investigate here is based on
the classical perceptron learning rule: the synapses aressto-
chasticallyd changed only when the response of the postsyn-
aptic cell is not the desired one. In biology, this “stop-
learning” property might be the expression of some
regulatory synaptic mechanisms or the expectation of a re-
ward signal. We show that some global inhibition, a small
synaptic transition probabilitysthe “learning rate”d and a
small neuronal threshold are sufficient to learn and memorize

a linearly separable set of patterns with an arbitrarily high
probability, provided that the number of neurons encoding
the patterns is large to allow for the necessary redundancy
required by the binary synapses. Global inhibition is required
because plasticity in our model is restricted to excitatory syn-
apses. Since the synaptic strengths are bounded, classifying
tightly separated patterns is only possible if the postsynaptic
neuron can finely discriminate between the inputs generated
by the two classes. This fine discrimination is achieved by
choosing a small neuronal threshold and inhibitory synaptic
strengths far from saturation.

In general, finding binary weights for a threshold linear
unit sa “perceptron”d which should separate two sets of pat-
terns is a combinatorially hard and NP complete problem
f7,8g. The difficulty of the weight assignment problem for
binary synapses is also reflected in the reduced storage ca-
pacity s=pmax/N=0.83, relating the maximal number of pat-
terns,pmax, which can be stored in a network ofN neurons,
see f9gd compared to the capacity in case of continuous-
valued synapsesspmax/N=2, seef10,11gd. No convergence
theorem exists for a purely local learning algorithm with
binary weights which asserts that linearly separable patterns
with appropriate constraints can be learned in a finite number
of presentationsssee Appendix Ad. With our stochastic algo-
rithm, the concergence is asserted with a high probability
within a finite time. The probabilistic convergence time de-
pends polynomially on the difficulty of the tasksi.e., poly-
nomially in 1/e, wheree is the separation margin between
the two sets of patternsd: the tighter the separation between
the two sets of patterns to be learned, the more presentations
are required until the perceptron is expected to correctly clas-
sify the patterns. The probability of not converging within a
specific number of presentations shrinks as 1/N whenN in-
creases whilee is kept fixed. Although the original problem
of separating any linearly separable setssi.e., with fixed N
and arbitrarily small separation margined with binary
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weights is NP complete, the reduced problem of separating
patterns with arbitrary largeN andfixedseparation margine
is unlikely to fall in this complexity class. Hence, our proba-
bilistic convergence theorem is neither a solution of the NP-
completeness problem, nor is it a contradiction to the re-
duced storage capacity of binary synapsessarbitrary linearly
separable sets can only be separated if they are embedded in
a high enoughN-dimensional space with fixeded. Neverthe-
less, since the neurons in the brain are working in parallel,
and since their number is abundant compared to the number
of ssubstantially differentd patterns to be classified, the sto-
chastic algorithm may represent a biological “solution” of
the binary weight assignment problem.

An interesting feature of bounded synapses is their self-
stabilizing property. When presenting similar patterns with
opposing outputs, the excitatory synaptic weights converge
towards a unique steady state which depends on the learning
rates and the rates of presenting the patterns. If this steady
state excitatory weight is dominated by the global inhibitory
weight, the neuron ceases to respond to patterns for which
contradictory outputs are required. This suppression mecha-
nism strongly improves the classification power of the net-
work. In fact, using our stochastic perceptron learning algo-
rithm for classifying preprocessed LATEX deformed letters
to train multiple perceptrons, we obtain performances
s,95% correctd close to the maximal ones reachedscf. f12g
and citations thereind. Instead of producing responses which
are wrong with high probability, the postsynaptic currents
become subthreshold during the course of the training and
the neurons stay silent.

The presented algorithm is also important for neuromor-
phic hardware implementations of learning networks. The
analog values representing the synaptic weights cannot be
easily stored for long time scalessdays or monthsd, unless a
digital approach is adopted. In fully analog VLSI chips, syn-
aptic memories can be implemented by floating gates, which
allow storing analog values with a resolution of a few bits
sup to 4–5d f13g. Given thats1d the qualitative behavior of
networks with discrete synapses does not change much when
the number of preserved states increasesf5g, s2d the floating
gate technology requires high voltages and sometimes non-
standard technologies, bistablesbinaryd synapses seem to be
the simplest and the most efficient solution. The stochastic
algorithm presented here, without the stopping condition, has
been implemented by a spike-driven synaptic dynamics
which can exploit the irregularities of the pre- and post-
synaptic spike trains to generate activity-dependent random
transitions between the two stable statesf14–16g. After
learning, in the absence of further stimulus presentations, the
memories can be preserved indefinitely, and they are very
robust also to the disrupting action of nonstimulus dependent
spontaneous activity.

The paper is organized as follows: After presenting the
neuron model, the learning rule and the formal theorem, we
give an extended outline of the proofsSec. III Bd. We then
test the predicted finite convergence time and its dependency
on the synaptic transition probability for sets of uncorrelated,
linearly separable patternssSec. III Cd. To explore the ben-
efits of the stochastic learning and the synaptic saturation we
apply our algorithm to the classification of nonlinearly sepa-

rable patterns with multiple perceptronssSec. III Dd. The dis-
cussion addresses the putative reasons for the good perfor-
mance on nonseparable data sets, and hints to literature on a
biologically more realistic, spike-driven implementation of
the current algorithm. Appendix A explains why the “di-
rected drift” argument previously used to “prove” the con-
vergence of a similar stochastic algorithm for binary syn-
apsesf17g fails. Appendix B, finally, gives the rigorous proof
of our theorem.

II. MODEL

A. Network model

We consider a network ofN input neurons, each con-
nected toM output neurons. All the input neurons feed a
population of inhibitory cells, which in turn, project onto the
output neurons. Neuroni is activesai =1d if the total postsyn-
aptic currenthi is above a thresholduoPR, and inactive
sai =0d otherwise,ai =Hshi −uod. The total postsynaptic cur-
rent hi is the weighted sum of the synaptic inputs from the
network and some global inhibition,hi =s1/Ndo j=1,jÞi

N sJij

−gIdaj, with a fixed inhibitory synaptic weightgI P s0,1d.
The excitatory synaptic weightJij from the presynaptic neu-
ron j to the postsynaptic neuroni is a stochastic variable, as
explained below, and takes on the binary values 0 or 1.

During training, for each stimulus the input neurons are
clampedto a specific pattern of activitiesaj =j j

m. A pattern of
desired activities is imposed by an instructor to the output
neuronssai =ji

md. The goal of learning is to modify the syn-
apses in such a way that the desired output is produced by
the input also in the absence of the instructor, i.e., when the
output activity is entirely determined by the weighted sum of
the inputs. In particular, if there are two possible desired
outputs for each stimulussai =0 or 1d, then the goal is to find
valuesJij =0 or 1 such that

1

N
o
jÞi

sJij − gIdj j
mH.uo + do if ji

m = 1

,uo − do if ji
m = 0

J s1d

for all patternsjm. The parameterdoù0 represents some
learning margin.

Notice that in a recurrent network each unit can be re-
garded as both an input and an output neuron, soN=M. The
same formalism and results also apply to the case of recur-
rent networks. In particular, conditions1d guarantees that
each patternjm is a fixed point of the network dynamicsai
=Hfhisad−uog. These fixed points are also attractors in the
limit of large N with a strictly positivesfixedd do. In what
follows we consider the case of a recurrent network. We also
drop the indexm of jm because the same considerations ap-
ply to any generic patternj.

B. Local stochastic learning rule

When the neuronal activities are clamped with a fixed
binary activity patternj, synapses stochastically switch their
states depending on the pre- and postsynaptic activities, and
depending on the total postsynaptic current. A synapse which
is depressedsJij =0d will be potentiated with probabilityq+,
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provided thats1d the pre- and postsynaptic neurons are ac-
tive, j j =ji =1, buts2d the total postsynaptic current is not too
large,hi øuo+do, with some learning margindoù0. In turn,
a synapse which is potentiatedsJij =1d will be depressed with
probability q−, provided thats1d the presynaptic neuron is
active,j j =1 and the postsynaptic neuron inactive,ji =0, but
s2d the total postsynaptic current is not too much below
threshold, sayhi ùuo−do. The factorsq+ and q− represent
sufficiently small learning rates for potentiation and depres-
sion, respectively. The dynamics of the synaptic strengths
evolves in discrete time steps, according to the sequential
clamping of the network with different activity patterns. In
summary, upon presentation of a patternjt at timet the syn-
apses from an active presynaptic neuronj si.e., withj j

t =1d to
a postsynaptic neuroni change according to

Jijst + 1d = HJijstd + z j
+s1 − Jijstdd, if ji

t = 1,hi
t ø uo + do

Jijstd − z j
−Jijstd, if ji

t = 0,hi
t ù uo − do,

J
s2d

wherez j
± are binary random variables which are 1 with prob-

ability q± and 0 with probability 1−q±, respectively. The
saturation factors arise because a synapse will only be poten-
tiated provided it is currently depressed, hence the factor
f1−Jijstdg, and a synapse will only be depressed provided it
is currently potentiated, hence the factorJijstd. We speak of a
synaptic updatefor the postsynaptic neuroni if the synapses
targeting i undergo a stochastic potentiation or depression,
respectively, i.e., if the conditions in one of the lines in Eq.
s2d are satisfied. The condition on the total postsynaptic cur-
renthi

t in s2d is referred to as astop-learning conditionsince
it preventshi

t from increasing or decreasing more than just
required to reproduce the correct outputji

t.

C. On-line learning scenario

We consider a setC of p binary activity patternsj
=sj1, . . . ,jNd with j j P h0,1j. The patterns are repetitively
presented to the network, such that each cycle ofp patterns
covers the whole setC. When presenting patternjtPC at
time t, the N neurons will be clamped to the activities
j1

t , . . . ,jN
t , and the total postsynaptic currentshi

t are calcu-
lated by the neurons. Applying the learning rules2d, a syn-
apse will stochastically potentiatesdepressd if the conditions
for potentiationsdepressiond are satisfiedsi.e., if it is not yet
potentiated or depressed, respectively, and if the correspond-
ing conditions onji, j j, andhi are satisfiedd. Learning stops
sconvergesd for each pattern if the learning thresholds are
surpassed,hi .uo+do if ji =1 andhi ,uo−do if ji =0, and the
total currentshi therefore faithfully reproduce the clamped
activities in the sense ofs1d.

III. RESULTS

A. Learning linearly separable patterns with binary synapses

A necessary condition for a set of patternsC to consist of
local attractors is that each of its patternsj satisfies the self-
consistency conditionss1d. In turn, these self-consistency
conditions require that for each neuroni the subset of pat-

ternsj which activatei sji =1d is linearly separable from the
subset of patterns which do not activatei sji =0d. In other
words, they require thatC is componentwise linearly
e-separablefor somee.0, i.e., that for each neuronscom-
ponentd i there is a separation vectorS=SsidP f−1,1gN with
Si =0 and a separation thresholdu=ui PR such thatjS. su
+edN for all jPC with ji =1, andjS, su−edN for all jPC
with ji =0. The following theorem states that for fixede.0
and largeN the componentwise lineare separability is also
sufficient for a class of patterns to be learned by the network
with the stochastic synaptic updates. Under these conditions
we show that for sufficiently small scaling factors%=%i
.0 and sufficiently small transition probabilitiesslearning
ratesd q=qi

± .0 the synaptic dynamicss2d with neuronal
thresholduo=%u and learning margindo=%d is likely to
converge within a finite number of presentations. For sim-
plicity we assume thatuo anddo are the same for all neurons
i in the network, but any thresholds and learning margins
below some value would also be admissible. The learning
rate and the scaling factor depend one sand the choice of the
global inhibitiond, but are kept fixed during the learning pro-
cess.

Theorem: Let C be an arbitrarily large set of component-
wise, linearly se+dd-separable patternsjP h0,1jN with
separability thresholdu sande.0, dù0d. Fix any inhibitory
strength gI P s0,1d, any scaling factor%øeḡI /16, and any
learning rate qø ss%ed2ḡI /8d2, where ḡI =minhgI ,1−gIj.
Consider a recurrent network with neuronal thresholduo
=%u, learning margin do=%d, and global inhibition gI.
Then, for any repeated presentation of the patternsjPC and
any initial condition Jij P h0,1jN2

, the synaptic dynamics (2)
converges for large Nswith fixed ed with arbitrarily high
probability in at most no=8/fqḡIs%ed2g synaptic updates for
each neuron. Fixing the separation margine, the probability
of not converging within no updates scales as1/N.

A formal proof of the theorem is given in Appendix B.
The assumption that the separation parametere is fixed while
N sand perhaps alsopd increases yields the necessary redun-
dancy for encoding the patterns across theN neurons. This
redundancy may not be present if the number of patternsp is
arbitrarily growing with N. In fact, the probability thatp
=cN randomly chosen patterns arescomponentwised linearly
separable is below 0.5 forc.2, and for fixedc.2 it drops
to 0 with increasingN f10g. In turn, the patterns are likely to
be separable for largeN if c,2 sin the limit of large but
fixed N the expected separation margine drops as 1/Îp, see
f18g, Eq. s7dd. In any case, increasing the number of neurons
sNd while fixing the number of random binary patternsspd,
makes it likely that the patterns become linearly separable.
Note that an appropriate learning rateq and an appropriate
scaling factor% are not required to be in the order of 1/N.
These parameters only scale with a power of the separation
margin e and with the distanceḡI of the global inhibitory
weight from its boundaries 0 and 1, but they do not depend
on the network sizeN.

B. Outline of the proof

Since during the learning process the neuronal activities
are clamped to fixed valuessj jd we may discard the recurrent
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connections and consider each neuron individually. Picking
out any postsynaptic neuroni we have to show that learning
stops for the synapses projecting onto that neuron. Dropping
the indexi we abbreviateJt=fJi1std , . . . ,JiNstdg, and the total
synaptic strength onto neuroni is written asJI

t =Jt−gI1. The
set of patternsC splits into the two subsetsC+ andC− com-
posed of patterns which either activate or do not activate
neuroni, ji =1 or ji =0, respectively.

1. Controlling synaptic saturation

The general strategy of the convergence proof is to ap-
proximate the discrete-valued synaptic dynamics by the
mean field dynamics with analog synaptic strengths, as
treated inf19,20g. The “mean field” at timet is defined by
the expectation valueskkJI

tll of the total synaptic weight vec-

tor JI
t =Jt−gI1 across all trajectoriesJI

t8 up to t8= t. As a first
step one proves that for tightly separated patternsssmall ed
kkJI

tll converges fort=1,2, . . . to ascaled solution vector%S
separating the classesC+ and C−. The convergence is en-
forced by the “teacher” who “tells” whether the desired out-
put sji

t=1 or 0d could be reproduced by the neuronfin which
case no synaptic update occurs because the condition onhi

t in
Eq. s2d is not satisfiedg or could not be reproducedsin which
case a distorted fraction of the input patternjt is added or
subtracted to the expected weight vector, depending on
whether the output should be 1 or 0, respectivelyd.

If there would be no synaptic saturation, the convergence
kkJI

tll→%S would follow as in the classical perceptron con-
vergence proofssee, e.g.,f21g; compare also Sec. III B 4
belowd. In the case of synaptic saturation, however, a distor-
tion of the expected update vector arisessthe “forgetting”
partd which drives the expected excitatory weight vector
kkJtll steadily away from the boundary. Without the stop-
learning condition, when learning infinitely occurs, synaptic
saturation drives this expected weight vector towards some
asymptotic state where the learning effort is balanced by the
synaptic saturation. In the presence of the stopping condi-
tion, this asymptotic state may not be reached. Instead, after
a successful learning, the weight modifications stop when the
distribution of the postsynaptic currents is narrowly clustered
around the neuronal threshold, with a peak just aboveuo
+do and a peak just belowuo−do. If the threshold scaling
factor% is small,uo=%u anddo=%d are both small, and the
final distribution of the postsynaptic currents will be close to
0. This is only possible if most of the components ofkkJI

tll
become small. In fact, learning tightly separable patterns
drives the expected total weight vector towards the scaled
solution vector,kkJI

tll=kkJtll−gI1→%S<0, such that after
learning all the components components are small,kkJI

tll
<0. As a consequence, the expected excitatory weight vector
approaches the global inhibitory weight vector,kkJtll<gI1.
If the global inhibitory strength is in the middle of the maxi-
mal and minimal synaptic strength,gI =0.5, learning pushes
the expected excitatory weight vector towards the center of
the hypercube,kkJtll→0.5.

The benefit of choosing the global inhibition around 0.5 is
that both the synaptic saturationand the learning effort, are
pushing the expected weight vector away from the boundary

towards the hypercube center. AskkJtll approaches the hy-
percube center, however, synaptic saturation starts to coun-
teract the learning because saturation tends to drive the
weight vector into a uniform equilibrium state in which any
synaptic structure acquired by the learning is flattened out.
Fortunately, when the excitatory weight vector is close to the
hypercube center, forgetting becomes negligible, while the
effect of the learningsthe linear partd remains finite. Synaptic
saturation can therefore be controlled by choosing a small
scaling factor% which gates the dynamics of the expected
excitatory weight vector towards, but not on to, the center of
the hypercube. Far from the synaptic bounds learning is
dominated by the linear part, as in the classical perceptron
learning without synaptic bounds, and the expected excita-
tory weight vector may converge towards a possible solution
vector,kkJtll→%S+gI1. Of course, to prevent overshooting,
a small threshold scaling factor% also requires a small learn-
ing rateq.

2. Problem of synaptic correlations

There is a problem, though, with this strategy of proof
because a description of the dynamics ofkkJtll as a function
of the expected total currentkkhtll would require that the
trajectoriesJt follow arbitrarily close the trajectory ofkkJtll
as the network size increase. However, due to the stochastic-
ity in the synaptic updates there are always trajectories which
strongly deviate from the meansand which actually do not
converged, and only “typical” trajectoriesJt with typical syn-
aptic updates may follow the meankkJtll until convergence.
Typical trajectories remain close to each other only if their
synapses are updated at exactly the same time steps. This is
because the stop-learning condition introduces correlations
among the synaptic states which may sum up in time and
become large. These correlations produce a variance in the
total postsynaptic currentht at timet which can be as large as
1/N+q, with q=q± the learning ratessd, whereas without
stop-learning condition the variance inht is bounded by 1/N.
Such a variance is too large to be neglected because the total
number of updates necessary for the convergence increases
with the inverse of the learning rates1/qd, and the expected
deviations of the total postsynaptic current from the mean
can therefore accumulate throughout the learning process up
to 1. The dynamics ofkkJtll can therefore only be described
by tracking subclasses of the full distribution of possible
trajectories.

3. Restriction of the synaptic dynamics to subclasses

To take account of the synaptic correlations we partition
the space of all possible trajectories into subclasses of trajec-
tories following the same update sequence, i.e., satisfying the
same update inequalities imposed ontoht8 at any time step
t8ø t. Instead of tracing the meankkJtll across all possible
trajectories, we trace the individual meanskJtl across trajec-
tories of the same subclass. Restricted to such a subclass
with the same update sequences, one can show that the “sub-
class variance” ofht is small enough and, in fact, shrinks to
0 asN becomes large. Our proof, however, moves along a
slightly different path. We show that with high probability an
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individual subclass mean uniformly converges within a finite
time. By definition of the subclass, all trajectories simulta-
neously satisfy or do not satisfy the update conditions, and
the dynamics of the subclass mean therefore stops if and
only if each individual trajectory within the subclass stops.
Since the subclasses together cover all possible trajectories,
the convergence is assured with high probability for all tra-
jectories.

4. Convergence of each subclass mean

To prove the subclass convergence we show that each
time stept the subclass meankJI

tl strictly moves with a mini-
mal positive step size towards the scaled solution vector%S.
Since the initial distanceikJI

0l−%Si is finite, the convergence
with such strictly positive step sizes must stop. To show that
the distance fromkJI

tl to %S decreases each time step by a
minimal amount we have to show thats1d the update vector
kDJtl forms an angle strictly smaller than 90° with the direc-
tion from kJI

tl to %S, and thats2d the update vectorkDJtl is
not too longsto prevent overshootingd. The first requirement
directly follows from the learning rule when the saturation is
small: If the synaptic saturation in Eq.s2d would be ne-
glected, the expected update vector would bekDJtl= ±qjt,
depending on whether the condition for a long-term poten-
tiation fLTP, upper line in Eq.s2dg or a long-term depression
fLTD, lower line in Eq.s2dg is satisfied, respectively. In the
case of LTP, e.g., the separability assumption states that
jt%S.%su+edN and the condition onht in Eq. s2d states that
Nkhtl=kJI

tljtø%u+%d. Combining these two inequalities
yields s%S−kJI

tldqjtùq%eN. The same estimate is also ob-
tained in the case of LTD. If we now take synaptic saturation
into account, the expected update vector in case of LTP, e.g.,
becomeskDJtl=qjts1−kJtld, and this can be written as
kDJtl=qjts1−gI1d−qjtkJI

tl. The additional factors1−gI1d
does not harm since the components are identical. But the
additional forgetting part,kDFl=−jtkJI

tl=−jtkJt−gI1l, may
well distort the update vector. Fortunately, the distortion is
small if each component of the expected weight vectorkJtl is
close togI <0.5. Moreover, because of the negative sign in
front of jtkJt−gI1l, the forgetting part actively driveskJtl
towards this hypercube center at 0.5 wherekDFl<0. We
conclude that for small% sdefining the final distance ofkJtl
from gI1, cf. Sec. III B 1 aboved andgI close to 0.5, the angle
between kJI

tl and %S is strictly below 90°, s%S−kJI
tldqjt

ùq%eN. It remains to be shown that the update vector is
short, more precisely, thatikDJtli2,q%eN.

5. Synaptic correlations are small within large subclasses

Unfortunately, the smallness of the expected change
ikDJtli2 is not evident. It can be large if the synaptic corre-
lations evoked by the update condition imposed onht are
strong. In fact, due to this update condition, a subclass de-

fined by an update sequenceDJj
t8 up to timet could be com-

posed of only a single trajectory. In this case the above norm
square would just count the number of synaptic transitions at
time t, ikDJtli2=o jkDJj

tl2=o juDJj
tu, and this can be in the

order ofqN or even larger. Note that the expectedssubclassd
transition at a specific synapsej , in the case of a single
trajectory in the subclass, is equal tokDJj

tl=DJj
t =0 or ±1.

Only if there are many trajectories within a subclass, such
that they are faithfully sampling the transition probabilityq
at each synapse, will the expected transitions become small,
say kDJj

tl2øq3/2, and ikDJtli2 would be smaller thanq3/2N.
The requirement of a large number of equivalent trajectories,
i.e., trajectories giving the same incrementDht

=s1/Ndo jDJjj j and therefore staying in the same subclass, is
a redundancy requirement onto the synaptic encoding. We
next show that with largeN the equivalent trajectories be-
comes numerous and that in each subclass up to timet there
are enough trajectories such thatikDJtli2 is small.

6. Redundancy assures large subclasses and hence good
approximation of the dynamics by the subclass means

To assure that most of the subclasses contain many trajec-
tories one might simply duplicate the synapses between in-
dividual neurons, or equivalently, duplicate the neurons
which encode an individual component of the patterns. How-
ever, such an explicit coding scheme is not necessary. In-
stead, the smallness ofikDJtli2 is obtained from increasing
the number ofspresynapticd neurons,N, while encoding the
p patterns such that the separation margine does not shrink.
Two cases are considered:s1d In the case that only a few
synapses satisfy the update condition onj j, jpostandht in the
learning rulefEq. s2dg, the subclass meankDJj

tl2 might still
be large for these synapsessperhaps even 1d. But since
kDJj

tl2=0 for all other synapses which do not satisfy the up-
date conditions, we obtainikDJtli2øq3/2N. s2d In the case
that many synapses satisfy the update conditions, there will
be many different stochastic transitions with the same effect
on the total postsynaptic currentht, and therefore giving tra-
jectories within the same subclass. Averaging over these
many trajectories one gets also in this caseikDJtli2øq3/2N,
as argued above. To getq3/2Nø%qeN as required above we
need a second time that the learning rateq is small. We
conclude that each time step the distance from the subclass
mean kJI

tl to the solution%S shrinks by at least a fixed
amount. This completes the convergence proof.

C. Classifying uncorrelated random patterns

To test the statements of the theorem we trained a single
binary perceptron with stochastic learning on random uncor-
related binary patterns, as inf22g. In Fig. 1sad we show the
number of iterations per pattern until learning for a fixed
postsynaptic neuron stops as a function of the number of
neuronsN of the input layer. We consideredp=10, 20, and
40 random uncorrelated binary patterns, generated with a
probability of 1/4 for a neuron to be active. As expected, the
finite size effects decrease withN and the number of itera-
tions tend asymptotically to a value which depends only on
the number of patterns. This is because the separation margin
of the two classes decreases with increasing number of pat-
terns. Figure 1sbd shows, the number of iterations per pattern
needed for convergence as a function of the scaling factor%
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and the transition probabilitiesq=q+=q− for random uncor-
related binary patternssp=10,N=100d. If learning is too fast
or % is too large, the number of iterations grows very quickly
and eventually becomes impossible to converge. Note that
there is an optimal learning rate for each threshold. While a
large learning rate can prevent the convergence, a very small
learning rate will only slow down the learning process, al-
though convergence remains guaranteed. The long conver-
gence time is due to the fact that there is a minimal distance
from the initial weight vector to the set of possible solution
vectors which needs to be crossed and which leads to a scal-
ing of 1/q of the number of required iterations. The conver-
gence time also increases if the global inhibitory strengthgI

approaches 0 or 1snot shown, but seef19,20gd.

D. Classifying nonlinearly separable patterns with multiple
perceptrons

We also trained the perceptron on more complex, LATEX
deformed charactersfFig. 2sadg, preprocessed as inf12g. The
goal is to classify 32n nonlinearly separable patterns orga-
nized inn classessn=10–200d. As the patterns are not lin-
early separable and therefore not classifiable by a single per-
ceptron, each class is learned by a group of ten independent
perceptrons. For each of then classes theN=2010 input
neurons project to all ten output neurons within the group.
Each output neuron of one specific group is trained to be
selective to the 32 patterns of one class. For example, during
the learning phase the first group of output neurons is acti-
vatedsclamped to 1d only when one of the 32 samples of the
letter “a” are presented. It is silentsclamped to 0d for any
other pattern. The second group of output neurons is trained
to respond only to “b”s, the third group to the “c”s, etc. All
the patterns are repeatedly presented in a fixed order, and
every time the synapses are randomly updated according to
the stochastic learning rule withq+=q−=0.01. Learning
might stop after a finite number of iterationsse.g., for a small
number of classesd, or there might be always errors. In the
latter case the simulation is stopped after 300 repetitions per
pattern. In the test phase, only the presynaptic neurons are
clamped, and the activities of the output neurons are ob-
tained from thresholding the total postsynaptic currents. The
input pattern is classified by a majority rule: the group of
neurons with the most active neurons determines to which
class the input pattern is assigned. The neuronal thresholduo
is set to 5/N, and the margindo for stopping the learning is
also 5/N scorresponding to a difference of five neuronsd. On
average each pattern activates 50 neurons of the input layer,
but the coding levels vary over a wide rangesfrom 10 to 100
neuronsd.

Figures 2sbd and 2scd show the distribution of the total
postsynaptic currents generated by the different patterns
across those output neurons which should get activatedssolid
lined, and across those which should not get activated
sdashed lined. Before learningfFig. 2sbdg the two distribu-
tions are very similar because the initial synaptic weights are
random and not correlated with the patterns. After learning
fFig. 2scdg, they are well separated by the neuronal threshold,
allowing a classification without errors. In the present ex-
ample, learning converged because only a small number of
classes were useds26 classes corresponding to the letters of
the alphabetd. Although the patterns are highly correlated,
they are apparently still linearly separable.

In the case of nonlinearly separable patterns, the situation
is more complex. When each pattern is presented for classi-
fication there are three possible outcomes:s1d no output unit
is activated: the pattern isnot classified; s2d the majority of
active output units belong to the correct class: the pattern is
correctly classified;s3d the majority of active output units
belong to the wrong class: the pattern ismisclassified. The
results are shown in Fig. 3, where we plot the fraction of
misclassifiedsad and nonclassifiedsbd patterns as a function
of the number of classes. In the case shown in the figure, the
fraction of misclassified patterns is very small compared to
the fraction of nonclassified patterns. The ratio between these

FIG. 1. Convergence time as a function of different parameters.
sad Number of iterations per pattern as a function of the number of
neuronsN for p=10, 20, and 40 uncorrelated random patternssq
=0.05,f =1/4,u=0.01d; sbd Number of iterations per pattern as a
function of the learning ratessynaptic transition probabilityd q and
the scaling factor%. Convergence is only guaranteed if% andq are
small. Note that for smallq the convergence time only increases
because the “step size” decreases, and not because the combinato-
rial problem becomes difficult as is the case for large% and largeq.
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two quantities depends on the statistics of the patterns and on
the ratio betweenq+ and q−. As the number of depressing
events spatterns which satisfy the condition for LTDd in-
creases compared to the number of potentiating events, the
distribution of the total synaptic current drifts to lower val-
ues, thereby inactivating a larger number of output units.
This increases the fraction of nonclassified patterns, but low-
ers the fraction of misclassified patterns. The network be-
comes more undecisive, but also more reliable in the classi-
fication task.

IV. DISCUSSION

We have shown that any set of linearly separable patterns
can be learned by our local stochastic learning rule with
discrete-valued synapses. The restriction of the synaptic plas-
ticity to excitatory synapses makes global inhibition neces-
sary. Moreover, a tight separation margin between the two
classes of patterns requires a small learning ratesimple-
mented in the form of small synaptic potentiation and de-
pression probabilitiesd and a small neuronal threshold.

A. Slow learning and redundancy

In this paper we fix the learning rate and the neuronal
threshold in advance, depending on the difficulty of the clas-
sification task. However, they might also be adjusted by
some homeostatic mechanism operating during the learning
process. For instance, the threshold might slightly decrease if
the clamped activity is not correctly predicted by the total
postsynaptic current, and it might slightly increase in the
other cases. Note that decreasing the neuronal threshold is
equivalent to increasing all the excitatory synaptic weights,
as it arises in biological neurons through homeostatic plas-
ticity f23g.

The probability for the learning process to converge
within some fixed number of presentations increasessas 1
−1/Nd as the number of neuronssNd tends to infinity. While

the number of neurons increases, the separation marginsed
must remain strictly positivesi.e., bounded away from 0d.
This is a form of redundancy which is necessary for learning
with discrete synaptic weights. Together with the slow learn-
ing, it represents the price for solving a combinatorially dif-
ficult task with a learning rule which is purely local in space
and time. This is consistent with the fact that the maximal
storage capacity of networks with binary synapses is smaller
than the one for synapses with continuous weightsssee
f9,10g and Sec. Id. Moreover, the redundancy implies a solu-
tion of the original, NP-complete weight assignment problem
for classifying linearly separable patterns.

B. Spike-driven stochastic implementation

The stochasticity in the synaptic modification is more than
just a slowing down of the learning process. The stochastic
selection of the synapses spatially decorrelates the synaptic
updates which in turn allows for an optimal redistribution of
the synaptic resources and to classify nonlinearly separable
patterns.

The stochastic selection mechanism can be implemented
in terms of a detailed spike-driven synaptic dynamics by
exploiting the irregularity of the spike trains. A synaptic
modification, for instance, could only be triggered upon co-
incidences of some pre- and postsynaptic spikes within a
fixed time window or by the accumulation of coincidences of
presynaptic spike and high postsynaptic depolarization
f5,14,24,25g. The stopping mechanism can be implemented
in terms of these dynamic features of biological synapses
f26g. In all these cases the load of generating the noise to
drive the stochastic selection mechanism is transferred out-
side the synapse and is delegated to the collective behavior
of the interacting neurons which may show highly irregular
spiking patternsf15g. By this “out-sourcing” of the noise-
generating machinery it becomes possible to control arbi-
trarily small transition probabilities.

FIG. 2. Classification of nonlinearly separable patterns:sad Deformed LATEXcharacters used for the benchmark test. Left: prototype
letters; right: random sample of deformed letters; bottom: sample of deformed letters of class “2”sreproduced fromf12gd. sbd,scd Distribu-
tions of the total postsynaptic currentshi evoked by the patterns belonging to the two different classesC+ ssolid line, pooling together all
output units which should get activatedd andC− sdashed line, pooling together all output units which should not get activatedd, averaged over
the 26310 output neurons representing the letters of the alphabet in groups of 10. While before learning both classes evoked subthreshold
currentssbd, the two classes are well separated after the trainingscd, with patternsjPC+ evoking suprathreshold currentsssolid lined and
patternsjPC− evoking subthreshold currentssdashed lined. Vertical lines represent the neuronal thresholduo, flanked with the stop-learning
thresholdsuo±do.
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C. Classification of nonlinearly separable patterns

A single output neuron can only classify linearly sepa-
rable patterns. However, when the stochastic learning rule is
applied to a network of multiple output units, it becomes
possible to discriminate between patterns which are not lin-
early separable. We showed that the classification perfor-
mances on a large complex data setsLATEXdeformed char-
actersd are surprisingly good, better than the ones of recent
models which in general are more complex and require pa-
rameter tuning. For example the best performance on 293
classes inf12g is 60% correct, while in our case we have
94.5% correct when the same numbern of output units per

class is usedsn=20d. The authors off12g need a complex
and unnatural boosting technique to achieve a comparable
performance. A first ingredient for our good performance re-
sides in the fact that each output unit experiences a different
realization of the stochastic process generated by the binary
random variablesz when updating the synapsesfsee Eq.
s21dg. This means that each output unit will end up in clas-
sifying the patterns according to a different hyperplane.
When the information of all output units is combined, the
classification of nonlinearly separable patterns becomes pos-
sible. A weaker form of stochasticity which is based on the
quenched randomness of the connections is exploited inf12g.

A second ingredient for the good performance is related to
the read-out from the output units and depends on the statis-
tics of active output units: in order to read the relevant infor-
mation, only the output units with a reliable response should
be considered for the majority evaluation, while the other
units should be silentsand therefore will only contribute to a
nonclassification, not to a misclassification, see Fig. 3d. The
average fraction of active output neurons can be controlled
by changing the ratio betweenq+ andq−, which in turn de-
termines the asymptotic distribution when learning cannot
converge. The existence of an asymptotic distribution and a
fast convergence towards this distribution are guaranteed by
the discreteness and the boundedness of the synapses. Al-
though we did not present a theory for multiple output units
in the case of nonlinearly separable patterns, the above rea-
soning is proven to apply to a simplified scenariof20g: when
contradictory patterns are presentedsi.e., when the very same
pattern belongs to two different classesd, the output units will
be likely shut down, provided that the ratio of the effective
LTD rate q̃− over the effective LTP rateq̃+ is large enough.
This ratio in general will depend on the statistics of the pat-
terns and on the number of classes. The tuning of these ef-
fective LTD and LTP rates might be realized by other mecha-
nisms like homeostatic plasticityf23g.

D. Discrete versus continuous synapses

For simplicity, but also because of the direct applications
to learnable VLSI networks performing a memory task, we
were focusing on the case of binary synapses. However, the
convergence theorem similarly holds with a general,
discrete-valued finite set of synapses, and even with discrete-
valued neuronal activities. Whether on the macroscopic level
synapses can be modified in discrete or continuous steps re-
mains to be further investigatedf1g. Naturally, the synaptic
strengths are always bounded. Due to this boundedness, phe-
nomena such as balancing of excitation emerge during the
learning processf20g. The same phenomena are also ex-
pressed for the potentiation probabilities of finite, discrete-
valued synapses. The main difference in terms of learning is
that sfinited discrete-valued synapses require slower learning
than continuous-valuedsboundedd synapses. The slower
learning, on the other hand, is compensated by an increased
memory stability endowed by the discreteness of the synap-
tic states.
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APPENDIX A: DIRECTED DRIFT FAILS

A form of the present stochastic algorithmsdirected driftd
was studied inf17g, and arguments proving the convergence
were given. However, the directed drift argument fails in the
way it is used inf17g. To expose the problem, and to moti-
vate the notions of typicality and redundancy introduced in
the formal convergence proof below, we present a simple
example.

According to the directed drift argument the distanceiJt

−Si from the synaptic state vectorJt to the solution vectorS
would show a nonvanishing negative drift, and therefore
would shrink to 0 with high probability within a fixed time.
Unfortunately, in general this is not true. Let us assume that
the single patternj=s1, . . . ,1d with an even number ofN
components has to be learned with outputj0=1. Assuming a
threshold uo=1/2, a possible solution vector isS
=s1, . . . ,1 ,0, . . . ,0d, where the number of 1’s isN/2. Let us
consider the synaptic stateJt=s1, . . . ,1 ,0, . . . ,0d with a
slightly smaller numberN/2−n of 1’s, sayn= beNc with some
small e.0. This synaptic state leads to the independent sto-
chastic potentiation of synapsesN/2−n+1, . . . ,N with prob-
ability q. In this example the distance fromJt to S increases,
iJt+1−Si. iJt−Si, with high probability. This is because
only a potentiation of the first fewsnd synapsesN/2−n
+1, . . . ,N/2 bringsJt closer toS, while the potentiation of
all the remainingsN/2d synapsesN/2+1, . . . ,N moves Jt

away from S. If N@n the probability thatJt moves away
from S is therefore arbitrarily close to 1.

What is always true, however, is that theexpectedweight
vectorkkJtll converges toS, provided thatq is small enough.
In fact, the expected synaptic state at the next time step is
kJt+1l=s1, . . . ,1 ,q, . . . ,qd, and its distance toS is smaller
than the distance fromJt to S, ikJt+1l−Si2=ns1−qd2

+sN/2dq2, iJt−Si2=n, provided thatq is smaller than 2e.
Hence, the drift argument must be applied to the expectation
values, and it has to be assured that the stochastic dynamics
closely follows the dynamics of the expectation values. This
is the case for typical sequences since, for fixede and large
N, the stochastically selected components are reliably sam-
pling the subsets of sizesN/2−nd /N, n/N, andN/ s2Nd, re-
spectively. Beside this redundancy argument, the proof must
deal with the problem of synaptic saturationsforgettingd, as it
also arises in the case of bounded synapses with continuous
strengthsf20g.

APPENDIX B: PROOF OF THE THEOREM

1. Typical trajectories

Let us fix an arbitrary sequence of patternshjtjt=0,1,. . .

which repeatedly cycles through thep patternsjPC±. Let

the patternj=jt haveaN nonvanishing componentssa is the
coding level of the patternd. Let us assume thatj gives rise to
a stochasticupdate, i.e., that the condition on the total
postsynaptic currenth=sJ−gI1dj /N in the learning rules2d
is satisfied. Synapsej is selected with probabilityqj j. Let z
be the vector indicating that synapsej got selectedsz j =1d or
not sz j =0d. The mean and variance ofz j are given by
kkz jll=qj j and varz j =qj js1−qj jdøqj j, respectively. A sto-
chastic update vectorz is called typical if u1z−1kkzllu
ø sq2/2daN, i.e., if the number of selected synapses does not
deviate too much from its expectation value. Since 1kkzll
øqaN and vars1zdøqaN we conclude with the Chebyshev
inequality that any randomly sampled update is typical with
probability larger than 1−eo, i.e.,

PHu1z − 1kkzllu ø
q2

a
aNJ

ù 1 −
4 vars1zd
sq2aNd2 ù 1 − eo, with eo =

4

q3aN
,

sB1d

Where,P denotes the probability measure onh0,1jN induced
by PhzP h0,1jNuz j =1j=qj j. A trajectory is called typical if
each synaptic update is typical. The following property will
be used several times in the sequel. LetxP f−1,1gN. By ap-
plying Chebyshev’s inequality twice we get

PHz is typical anduxz − xkkzllu ø
q2

2
aNJ

ù 1 − 2
4 varsxzd
sq2aNd2 ù 1 − 2eo. sB2d

Note that the factor of 2 arises because we require two con-
ditions, u1z−1kkzlluø sq2/2daN as imposed insB1d, and also
uxz−xkkzlluø sq2/2daN. Each of these conditions is satisfied
with probability larger than 1−eo.

2. Trajectories with identical update sequences

Each trajectoryJt of s2d specifies a binary sequenceasJd
with asJdt=1 or 0, depending on whether or not the condi-
tion for a synaptic update onht is satisfied. Let us choose
some sequenceat of 0’s and 1’s. LetTt

a denote the set of
typical trajectoriesJ having the same update sequencea up
to time t, i.e., asJdt8=at8 for t8=1, . . . ,t. We will show that
there is ato such that for allt. to the setTt

a is either empty
or at=0, i.e., fort. to no synaptic update takes place. Let us
assume that the setTt

a, and therefore alsoTt+1
a , is not empty.

Let us assume that the condition onht for a stochastic
update is satisfied, i.e., thatat=1. Let us writes2d in the form
Jt+1=Jt+DJt with DJt=zp s1−Jtd if jtPC+ andDJt=−zpJt if
jtPC−. Here, “p” denotes the componentwise product of
vectors. LetkJtl be the expected synaptic strength across the
trajectories inTt

a at time t. Similarly, kDJtl denotes the ex-
pected change ofJt when averaging overTt+1

a . We decom-
posekDJtl into a linear part DL and aforgetting part DF.
Setting JI =J−gI1 and dropping the time index we obtain
from s2d;

CONVERGENCE OF STOCHASTIC LEARNING IN… PHYSICAL REVIEW E 71, 061907s2005d

061907-9



kDJl = DL + DF =Hs1 − gIdkzl − kz p JIl, if j P C+

− gIkzl − kz p JIl, if j P C−,
J
sB3d

where DF=−kzpJIl and DL=s1−gIdkzl or DL=−gIkzl, de-
pending on whetherjPC+ or jPC−, respectively.

3. Learning based on the linear part

According to the update and separability condition for the
casejPC+ we havejJI ,%su+ddN andj%S.%su+d+edN,
respectively, and therefores%S−JIdjù%eN. Similarly, for
the casejPC− we have the two conditionsjGI .%su−ddN
and j%S,%su−d−edN, respectively, and therefore −s%S
−JIdjù%eN. We thus obtain

s%S− JIds±jd ù %eN, for j P C±. sB4d

Averaging this inequality over the ensembleTt
a yields

s%S−kJIlds±jdù%eN, depending on whetherj is in classC+

or C−, respectively. This is correct because averaging is a
convex operation. In particular, settingy=%S−JI we have
kyjlùminsyjdù%eN. Let us abbreviatex=%S−kJIl. Since
kkzll=qj andkkz jllùq for aN components we conclude that

±xkkzll ù %qeaN, for j P C±. sB5d

Note thatkk.ll denotes the average over the whole ensemble
of possible updatesz at timet. We would like to replacekkzll
in the above estimate bykzl, where the latter average is taken
over the ensembleTt+1

a . Sinceuxjuø1 we can combinesB2d
and sB5d. For a typical update we therefore have with prob-
ability larger than 1−2eo;

±xz ù %qeaN−
q2

2
aN= qaNS%e −

q

2
D ù

q%

2
eaN,

sB6d

providedqø%e. Averaging overTt+1
a we obtain fromsB6d

that with probability larger than 1−2eo;

±xkzl ù
q%

2
eaN, for j P C±. sB7d

To get an upper bound foreo we first note thatu%S−JIu
ø1, and conclude fromsB4d that aù%e. With the expres-
sion for eo given in sB1d we obtaineoø4/sq3%eNd.

4. Controlling the forgetting part

To control the effect of the forgetting term we writeDF
=−kzpJIl=−kzlp kJIl−C with C=kzpJIl−kzlp kJIl. Setting
x=%S−kJIl, inserting the expression forDF and applying the
Cauchy-Schwartz inequalitysxyø ixi iyi, with equality if
and only if x=yd we get

xDF = kJIlskzl p kJIld − %Sskzl p kJIld − xC

= sÎkzl p kJIld2 − %sÎkzl p SdsÎkzl p kJIld − xC

ù iÎkzl p kJIlisiÎkzl p kJIli − %iÎkzl p Sid − xC.

sB8d

To estimatexC we writexC=kuzl−vkzl with u=xpJI and
v=xp kJIl. Note thatuujuø1 anduv juø1. For a typical update
we get fromsB2d that uvz−vkkzlluø sq2/2daN with probabil-
ity larger than 1−2eo. Averaging again over the ensemble
Tt+1

a gives with probability larger than 1−2eo:

uvkzl − vkkzllu ø
q2

2
aN. sB9d

Similarly, we get fromsB2d that uuz−ukkzlluøq2/2aN with
probability larger than 1−2eo. Since kul=v we obtain by
averagingukuzl−vkkzlluø sq2/2daN. Combining this inequal-
ity with sB9d yields for a typical update with probability
larger than 1−4eo:

uxCu = ukuzl − vkzlu ø q2aN. sB10d

5. When forgetting supports learning

In the case ofiÎkzlp kJIliù%iÎkzlpSi one immediately
gets from sB8d and sB10d that xDFù−q2aN. Since kDJl
=DL+DF we obtain together withsB7d that with probability
larger than 1−6eo;

xkDJl ù qaNS%

2
eḡI − qD ù

q%

4
eḡIaN, sB11d

provided that iÎkzlp kJIliù%iÎkzlpSi and qø s% /4deḡI.
Recall thatḡI =minhgI ,1−gIj.

6. When forgetting counteracts learning

Let us now assume thatiÎkzlp kJIliø%iÎkzlpSi. Setting
y=SpS we conclude fromsB2d that with probability larger
than 1−2eo:

iÎkzl p Si2 = ykzl ø ykkzll +
q2

2
aNø qaNs1 + q/2d.

From sB8d and sB10d we therefore get xDFù
−%2iÎkzlpSi2−xCù−qaNs2%2+qd. Since kDJl=DL+DF
we obtain together withsB7d that with probability larger than
1−4eo,

xkDJl ù qaNS%

2
eḡI − s2%2 + qdD

= q%aNS e

4
ḡI − 2%D + qaNS e%

4
ḡI − qD

ù
q%

8
eḡIaN, sB12d

provided thatiÎkzlp kJIliø%iÎkzlpSi, %ø se /16dḡI and q
ø se% /8dḡI.

7. Equivalent updates within a subclass

We next show thatikDJli2 is bounded byq3/2N. Since
DJ=zp s1−Jd and DJ=−zpJ for jPC±, respectively, we
have ikDJli2ø ikzli2. We will show that the expectation
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value kz jl is in the order ofq for most componentsj .
To give such an upper bound forkz jl across the trajecto-

ries in Tt+1
a we exploit the synaptic redundancy according to

which many different synaptic statesJt+1 lead to the same
total postsynaptic currentht+1=s1/NdJI

t+1jt+1. Let us consider
the case of a synaptic potentiation at timet; the case of a
depression being treated similarly. The states of the trajecto-
ries JPTt+1

a at time t+1 then have the formJt+1=Jt+DJt

with DJt=zp s1−Jtd. Let Za be the set of update vectorsz at
time t corresponding to the trajectories inTt+1

a . This is the
ensemble over which the expectation valuekzl is taken. We
decomposeZa into the subsetsZJ

a of updatesz starting from
a fixed stateJt at time t. This set is further decomposed into
sets of equivalentupdate vectorsz giving the same total
currentht+1, ZJ

asld=hzPZJ
a uDJtjt+1= lj for l PN. By apply-

ing twice the convexity of the averaging process we get
kz jlømaxJkz jlJømaxJ,lkz jll, where the different brackets
k.l, k.lJ, and k.ll =k.lJ,l refer to the expectation values across
Za, ZJ

a, andZJ
asld, respectively.

To estimatekz jll we first note thatz j at time t does not
affect the total postsynaptic currentht+1 if synapsej is al-
ready potentiated,Jj

t =1. For such componentsj the condition
zPZJ

asld therefore does not represent any restriction on the
value ofz j, and the average acrossZJ

asld is the same as the
average across all realizations,kz jll =kkz jll=q, provided that
ZJ

asldÞ0” . If these componentsj are numerous we conclude
that ikzli2øq3/2N. If they are not numerous, we will use the
redundancy argument to show thatkz jll is small. This leads
to the following case distinctionss1d and s2d.

8. Equivalent updates provide redundancy

Setz=s1−Jtdpjt+1 and letI1/0 be the set of componentsj
with zj =1 or zj =0, respectively. LetãN be the number of
components inI1, i.e., the number of components which
may have been potentiated at timet sJj

t =0d, and which are
activated by the pattern at timet+1 sj j

t+1=1d. Only for these
components will the state of the random variablez j at timet
have the chance to affect the total postsynaptic currentht+1.
We consider the two partially overlapping cases:s1d, ã
øq3/2s1−q1/2d / s1−q2d, ands2d, ãùq2.

s1d In the first case, whenãøq3/2s1−q1/2d / s1−q2d, we
havekz jll =kkz jll=q for the numerous componentsj PI0, as
outlined above, and triviallykz jll ø1 for j PI1. We therefore
obtain

ikDJtli2 ø ikzlti2 ø q2s1 − ãdN + ãN ø q2/3N,

provided thatã ø q3/21 − q1/2

1 − q2 . sB13d

s2d In the second case, whenãùq2, we again engage the
typicality of an update. Since varszzdøqãN we have accord-
ing to Chebyshev’s inequality, analogously tosB2d

Phuzz − zkkzllu ø q2ãNj ù 1 −
varszzd
sq2ãNd2 ù 1 − ẽo,

with ẽo =
1

q2ãN
ø

1

q5N
. sB14d

The probability that an update is typical in the sense ofsB1d,
and that it satisfiessB14d, is larger than 1−eo− ẽo. By defi-
nition of z we havezkkzlløqãN, and formulasB14d states
that with this high probability

DJtjt+1 = zz = ss1 − Jtd p jt+1dz ø qãNs1 + qd ø 2qãN.

sB15d

By definition of ZJ
asld we havezz= l for zPZJ

asld, and we
conclude fromsB15d that with the same high probabilityl
ø2qãN if the setZJ

asld is non-empty. In this case we can
write ZJ

asld=hzP h0,1jNuzz= lj and drop the constraint ofz
PZJ

a. This is becauseZJ
asld is either empty, or the condition

zz= l already implies thatzPZJ
a. Hence,ZJ

asld consists of all
binary vectorsz which have exactlyl ø2qãN 1’s among the
ãN nonvanishing components ofz. Since the individual vari-
ablesz j are stochastically independent, the relative frequency
of z j =1 for a fixedj across the setZJ

asld is thereforel / sãNd.
This is the desired redundancy according to which different
synaptic update vectorsz lead to the same total postsynaptic
currentht+1. Sincea.0 we conclude that with probability
larger than 1−eo− ẽo we have forj PI1:

kz jll =
l

ãN
ø

2qãN

ãN
= 2q. sB16d

Since for j PI0 the value ofz j does not affectht+1 we again
have kz jll =kkz jll=q for these components as explained
above. Together withsB16d we get that kz jlømax lkz jll

ø2q for any componentj , and thereforeikDJtli2ø ikzlli2

ø4q2N. If we assume thatqø1/16 we obtain together with
sB13d that, independent ofa, we have with probability larger
than 1−eo− ẽo:

ikDJtli2 ø ikzlli2 ø q3/2N. sB17d

9. Learning in the general case stops

We finally show that the distance fromkJIl to %S de-
creases with each synaptic update at least by some fixed
quantity. Let tm denote the timessd when patternjm is pre-
sented and the synapses are updatedsatm=1d. At a subse-
quent time steptm+1 there iskJI

tm+1l=kJI
tml+kDJtml. Recalling

the abbreviationxtm=%S−kJI
tml and combiningsB11d and

sB12d we estimatextmkDJtmlùq%eḡIaN/8 with probability
larger than 1−6eo. With sB17d we obtain with probability
larger than 1−7eo− ẽo;

ixtm+1i2 − ixtmi2 = − 2xtmkDJtml + ikDJtmli2

ø qNsq1/2 − %eḡIa/4d ø − q%eḡIaN/8,

sB18d

provided thatq1/2ø%eḡIa/8. Since we may safely assume
that the coding level of a pattern is larger than the scaled
separation margin parameter,aù%e, this and the previous
conditions onq are satisfied ifqø fs%ed2ḡI /8g2. Recall that
we also require%øeḡI /16.
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We next sum up the contributions of all the updates up
to time t evoked by the different patterns,kJI

tl=JI
0

+St
m8,tkDJtm8 l. Applying iteratively estimatesB18d, and using

again thataù%e, we obtain that with probability larger than
1−nts7eo+ ẽod:

0 ø ixtmi2 ø ix0i2 − ntqs%ed2ḡIN/8, sB19d

where nt is the number of synaptic updates up to thetth
presentation of a pattern. Sinceix0i=i%S−JI

0i2øN we get
from sB19d that with high probability we would haveixtmi2

,0 afternt.no=8/sqḡIs%ed2d updates. Since this is not pos-
sible we conclude that with high probability there cannot be
more thanno synaptic updates, i.e.,at=0 for all t larger than
to=pno, providedTt

a is not empty. The estimateto=pno holds
because within each cycle there is at least one of the totallyp
patterns which leads to a synaptic update—otherwise the pat-
terns would have been already learned. Hence, the trajecto-
ries become stationary with high probability after at leastto
time steps. Sinceeoø4/sq3%eNd and ẽoø1/sq5Nd the prob-
ability of not converging afterno updatessto time stepsd is in
the order ofOs1/Nd.
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