PHYSICAL REVIEW E 71, 061907(2005

Convergence of stochastic learning in perceptrons with binary synapses
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The efficacy of a biological synapse is naturally bounded, and at some resolution, and is discrete at the latest
level of single vesicles. The finite number of synaptic states dramatically reduce the storage capacity of a
network when online learning is consider@e., the synapses are immediately modified by each pattide
trace of old memories decays exponentially with the number of new mem@aéimpsest properjy More-
over, finding the discrete synaptic strengths which enable the classification of linearly separable patterns is a
combinatorially hard problem known to be NP complete. In this paper we show that learning with discrete
(binary) synapses is nevertheless possible with high probability if a randomly selected fraction of synapses is
modified following each stimulus presentati¢slow stochastic learningAs an additional constraint, the
synapses are only changed if the output neuron does not give the desired response, as in the case of classical
perceptron learning. We prove that for linearly separable classes of patterns the stochastic learning algorithm
converges with arbitrary high probability in a finite number of presentations, provided that the number of
neurons encoding the patterns is large enough. The stochastic learning algorithm is successfully applied to a
standard classification problem of nonlinearly separable patterns by using multiple, stochastically independent
output units, with an achieved performance which is comparable to the maximal ones reached for the task.
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[. INTRODUCTION a linearly separable set of patterns with an arbitrarily high
) _ _ . probability, provided that the number of neurons encoding
The strength of biological synapses can only vary within ahe patterns is large to allow for the necessary redundancy

limited range, and there is accumulating evidence that somgequired by the binary synapses. Global inhibition is required
synapses can only preserve a restricted number of statgcause plasticity in our model is restricted to excitatory syn-
(some seem to have only twd]). These constraints have apses. Since the synaptic strengths are bounded, classifying
dramatic effects on networks performing as classifiers or atightly separated patterns is only possible if the postsynaptic
associative memories. Networks of neurons connected bgeuron can finely discriminate between the inputs generated
bounded synapses whose efficacy cannot be changed by by the two classes. This fine discrimination is achieved by
arbitrarily small amount, share the palimpsest propé&ee, choosing a small neuronal threshold and inhibitory synaptic
e.g.,[2-5]): new patterns overwrite the oldest ones, and onlystrengths far from saturation.
a limited number of patterns can be remembered. The more In general, finding binary weights for a threshold linear
synapses changed on each stimulus presentation, the fastetit (& “perceptrony which should separate two sets of pat-
forgetting. The loss in synaptic structure caused by fast forferns is a combinatorially hard and NP complete problem
getting can be avoided by changing only a small fraction of. 7.8l The difficulty of the weight assignment problem for
synapses, randomly chosen at each presentation. HebbiQifia"y synapses is also reflected in the reduced storage ca-
learning with stochastic selection permits the cIassiﬁCatiorf)ac'ty (:pmaX/N:0'83’ relating the maximal number of pat-
and memorization of an extensive number of random uncor-emsépmax’ which gatn k;ﬁ stored '.r; a network b]!fneu:pns,
related patterns, even if the number of synaptic states is rqsl’—ZﬁJ[e (}) Sc?lgpsaer;) 3N—92 ng:[cl'g 1'5) cilsc’e c% n\(/:gp gnnucoeus—
duced to twd4,6]. However, additional mechanisms must be ynap maxt = e g

introduced to st listi " ith lat heorem exists for a purely local learning algorithm with
Introduced 1o store more realistic patlerns with correlate inary weights which asserts that linearly separable patterns

components. . . . . . with appropriate constraints can be learned in a finite number
The st_ochasnc algorithm we investigate here is based ops presentationssee Appendix A With our stochastic algo-
the classical perceptron leaming rule: the synapse$stbe iy, “the concergence is asserted with a high probability
chastically changed only when the response of the postsyngiwhin 4 finite time. The probabilistic convergence time de-
aptlc'cey!l is not the Qeswed one. In b'OIOQ.y’ this “stop- pends polynomially on the difficulty of the tagke., poly-
learning” property might be the expression of SOme,niayy in 1/e, wheree is the separation margin between
regulat_ory synaptic mechanisms or the e_xpgc_tatlon of a '%he two sets of patterfisthe tighter the separation between
ward signal. We show that some global inhibition, a smally 6 sets of patterns to be learned, the more presentations
synaptic transition probab|llt3(th<_a . learning ratef and a ._are required until the perceptron is expected to correctly clas-
small neuronal threshold are sufficient to learn and MeMOrizgiry, the patterns. The probability of not converging within a
specific number of presentations shrinks abl WhenN in-
creases while is kept fixed. Although the original problem
*Electronic address{wsenn,fusi@cns.unibe.ch; URL: http:// of separating any linearly separable s@ts., with fixed N
www.cns.unibe.chf{wsenn,fusi and arbitrarily small separation margine) with binary
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weights is NP complete, the reduced problem of separatingable patterns with multiple perceptrof®ec. Il D). The dis-
patterns with arbitrary larghl andfixedseparation margie  cussion addresses the putative reasons for the good perfor-
is unlikely to fall in this complexity class. Hence, our proba- mance on nonseparable data sets, and hints to literature on a
bilistic convergence theorem is neither a solution of the NPbijologically more realistic, spike-driven implementation of
completeness problem, nor is it a contradiction to the rethe current algorithm. Appendix A explains why the “di-
duced storage capacity of binary synap&esitrary linearly  yected drift” argument previously used to “prove” the con-
separable sets can only be separated if they are embedded\igrgence of a similar stochastic algorithm for binary syn-

a high enougN-dimensional space with fixed). Neverthe- — 5,56417] fails. Appendix B, finally, gives the rigorous proof
less, since the neurons in the brain are working in parallelys o theorem.

and since their number is abundant compared to the number

of (substantially differentpatterns to be classified, the sto-

chastic algorithm may represent a biological “solution” of Il. MODEL
the binary weight assignment problem.

An interesting feature of bounded synapses is their self-
stabilizing property. When presenting similar patterns with We consider a network oN input neurons, each con-
opposing outputs, the excitatory synaptic weights convergaected toM output neurons. All the input neurons feed a
towards a unique steady state which depends on the learnim@pulation of inhibitory cells, which in turn, project onto the
rates and the rates of presenting the patterns. If this steadyutput neurons. Neurdris active(a; = 1) if the total postsyn-
state excitatory weight is dominated by the global inhibitoryaptic currenth; is above a threshold, € R, and inactive
weight, the neuron ceases to respond to patterns for whicfy,=0) otherwise,a;=#(h;—6,). The total postsynaptic cur-
contradictory outputs are required. This suppression mechgent h; is the weighted sum of the synaptic inputs from the
nism strongly improves the classification power of the netnetwork and some global inhibitiomi:(l/N)EJN:j_j;ﬁi(‘Jij
work. In fact, using our stochastic perceptron learning algo—_gl)aj, with a fixed inhibitory synaptic weighg, e (0, 1).
rithm f_or class_ifying preprocessed LATEX _deformed lettersthe excitatory synaptic weigh}; from the presynaptic neu-
to train multiple perceptrons, we obtain performance§on j o the postsynaptic neurdris a stochastic variable, as
(~95% correck close to the maximal ones reach@fl [12]  gypiained below, and takes on the binary values 0 or 1.
and citations therejn Instead of producing responses which During training, for each stimulus the input neurons are
are wrong with high probability, the postsynaptic Cu”e”tsclampedto a specific pattern of activitiez = &“. A pattern of

become subthreshold during the course of the training anfesjred activities is imposed by an instructor to the output
the neurons stay silent. neurons(a;=¢&"). The goal of learning is to modify the syn-

The presented algorithm is also important for neuromor-apses in such a way that the desired output is produced by

ph|c| hardvlvare |mpIemer}tat|orr]13 of Iear_nmg _nt;tworks. Thethe input also in the absence of the instructor, i.e., when the
anallog va ude? r(alpresgntlng t Ie synaptic We'r? ts Icannot ljl?‘utput activity is entirely determined by the weighted sum of
easily stored for long time scal¢days or months unless a " innyts, In particular, if there are two possible desired

digital approach is adopted. In fully analog VLSI chips, Syn'outputs for each stimulu® =0 or 1), then the goal is to find
aptic memories can be implemented by floating gates, WhiCUaluesJ-- =0 or 1 such that '
ij

allow storing analog values with a resolution of a few bits
(up to 4-9 [13]. Given that(1) the qualitative behavior of >0,+ 6, if &=1
<6,-6, if &=0

A. Network model

1
networks with discrete synapses does not change much when NZ G —a)g’ 1)
the number of preserved states incred$és(2) the floating 17
gate technology requires high voltages and sometimes nofior all patterns¢“. The paramete,=0 represents some
standard technologies, bistalflginary) synapses seem to be |earning margin.
the simplest and the most efficient solution. The stochastic Notice that in a recurrent network each unit can be re-
algorithm presented here, without the stopping condition, hagarded as both an input and an output neuro\'sd. The
been implemented by a spike-driven synaptic dynamic$ame formalism and results also apply to the case of recur-
which can exploit the irregularities of the pre- and post-rent networks. In particular, conditiofl) guarantees that
synaptic spike trains to generate activity-dependent randomach patterre is a fixed point of the network dynamics
transitions between the two stable stafdgl-16. After  =%[h(a)-6,]. These fixed points are also attractors in the
learning, in the absence of further stimulus presentations, thgmit of large N with a strictly positive(fixed) &,. In what
memories can be preserved indefinitely, and they are verj|lows we consider the case of a recurrent network. We also
robust also to the disrupting action of nonstimulus dependerrop the indexu of & because the same considerations ap-

spontaneous activity. ply to any generic patters.
The paper is organized as follows: After presenting the

neuron model, the learning rule and the formal theorem, we
give an extended outline of the protBec. Il B). We then
test the predicted finite convergence time and its dependency When the neuronal activities are clamped with a fixed
on the synaptic transition probability for sets of uncorrelatedpinary activity patterrg, synapses stochastically switch their
linearly separable patterriSec. Il O. To explore the ben- states depending on the pre- and postsynaptic activities, and
efits of the stochastic learning and the synaptic saturation wdepending on the total postsynaptic current. A synapse which
apply our algorithm to the classification of nonlinearly sepa-is depressedJ;;=0) will be potentiated with probability®,

B. Local stochastic learning rule
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provided that(1) the pre- and postsynaptic neurons are acterns¢ which activate (&=1) is linearly separable from the
tive, §=¢=1, but(2) the total postsynaptic current is not too subset of patterns which do not activat¢=0). In other
large, h,< 6,+ &,, with some learning margia,=0. In turn,  words, they require thatC is componentwise linearly

a synapse which is potentiatedj; = 1) will be depressed with  e-separablefor somee>0, i.e., that for each neurofcom-
probability q~, provided that(1) the presynaptic neuron is ponent i there is a separation vecte=S" e [-1,1]N with
active, =1 and the postsynaptic neuron inacti¢e;0, but ~ §=0 and a separation threshafer 6 € R such that{S> (¢

(2) the total postsynaptic current is not too much below+e€)N for all £ C with &=1, andéS<(6-¢)N for all £C
threshold, sayh;= 6,—5,. The factorsq™ and g~ represent with &=0. The following theorem states that for fixed-0
sufficiently small learning rates for potentiation and depresand largeN the componentwise linear separability is also
sion, respectively. The dynamics of the synaptic strength§ufficient for a class of patterns to be learned by the network
evolves in discrete time steps, according to the sequentia¥ith the stochastic synaptic updates. Under these conditions
clamping of the network with different activity patterns. In We show that for sufficiently small scaling factogs=g;
summary, upon presentation of a pattérat timet the syn- >0 and syfﬂmently small transition .probab'|I|t|e(kearn|ng
apses from an active presynaptic neujdhe., with£=1)to ~ rates g=g->0 the synaptic dynamic¢2) with neuronal

a postsynaptic neuronchange according to threshold 6,=¢6 and learning margins, =4 is likely to
converge within a finite number of presentations. For sim-
J(t+1)= JO+ @A -30), f §=1h<6,+8, plicity we assume thad, and 5, are the same for all neurons
j 3,0 = 530, if £=0ht=6,- 4, i in the network, but any thresholds and learning margins

below some value would also be admissible. The learning
(2 rate and the scaling factor dependetand the choice of the

where{f are binary random variables which are 1 with prob-global inhibition, but are kept fixed during the learning pro-
ability g* and 0 with probability 1g* respectively. The CE€SS. o

saturation factors arise because a synapse will only be poten- Theorem: LetC be an arbitrarily large set of component-
tiated provided it is currently depressed, hence the factowise, linearly (e+d)-separable patterns¢ e {0, " with
[1-J;(1)], and a synapse will only be depressed provided iseparability threshold) (and e>0, 5= 0). Fix any inhibitory
is currently potentiated, hence the facitt). We speak of a  Strength ge (0,1), any scaling factore < €g,/16, and any
synaptic updatdor the postsynaptic neurdrif the synapses leaming rate g<((ee)g//8)?, where "g=min{g,,1-g}.
targetingi undergo a stochastic potentiation or depressionConsider a recurrent network with neuronal threshaigd
respectively, i.e., if the conditions in one of the lines in Eq.=@#6, learning margin 5,=¢4, and global inhibition g
(2) are satisfied. The condition on the total postsynaptic curThen, for any repeated presentation of the pattgfa<” and
renth! in (2) is referred to as atop-learning conditiorsince  any initial condition de {0, 1N, the synaptic dynamics (2)
it preventsh from increasing or decreasing more than justconverges for large Nwith fixed €) with arbitrarily high

required to reproduce the correct outgit probability in at most g=8/[qg,(¢¢€)?] synaptic updates for
each neuron. Fixing the separation marginthe probability
C. On-line learning scenario of not converging within fijupdates scales ak/N.

A formal proof of the theorem is given in Appendix B.
. " The assumption that the separation parameteffixed while
=(&,..-,&) with §{0,1}. The patterns are repetitively N ang perhaps alsp) increases yields the necessary redun-
presented to the network, such that each cyclp patterns  gancy for encoding the patterns across theeurons. This
covers the whole sef. When presenting patteréf < C at redundancy may not be present if the number of pattpiiss
time t, tthe N neurons will be clamped to the activities arbitrarily growing with N. In fact, the probability thap
&, ....& and the total postsynaptic currertisare calcu-  ~¢N randomly chosen patterns a@mponentwisglinearly
lated by the neurons. Applying the learning ri®, a syn-  separable is below 0.5 far>2, and for fixedc> 2 it drops
apse will stochastically potentiatdepressif the conditions {5 g with increasingN [10]. In turn, the patterns are likely to
for potentiation(depressionare satisfiedi.e., if it is notyet g separable for larghl if c<2 (in the limit of large but
potentiatgd or depressed, respective_ly,. and if th(_a Correspongsyed N the expected separation margimrops as 1{p, see
ing conditions org;, ¢, andh; are satisfiell Learning stops  [1g] Eq.(7)). In any case, increasing the number of neurons
(converges for each_ pattern if the Iearnlng thresholds are (N while fixing the number of random binary patterfs,
surpassed; > 0o+ 5, if §=1 andh < 6,=6, If §=0, and the o105 it Jikely that the patterns become linearly separable.
totgl_qurrgntshi therefore faithfully reproduce the clamped Note that an appropriate learning rafeand an appropriate
activities in the sense dfl). scaling factore are not required to be in the order ofNL/
These parameters only scale with a power of the separation
Il. RESULTS margin e and with the distance, of the global inhibitory
weight from its boundaries 0 and 1, but they do not depend
on the network sizé\.

We consider a set of p binary activity patternsé

A. Learning linearly separable patterns with binary synapses

A necessary condition for a set of pattethso consist of
local attractors is that each of its patteghsatisfies the self- B. Outline of the proof
consistency conditiongl). In turn, these self-consistency  Since during the learning process the neuronal activities
conditions require that for each neurdithe subset of pat- are clamped to fixed valugg;) we may discard the recurrent

061907-3



W. SENN AND S. FUSI PHYSICAL REVIEW E/1, 061907(2009

connections and consider each neuron individually. Pickingowards the hypercube center. Ag") approaches the hy-
out any postsynaptic neurarwe have to show that learning percube center, however, synaptic saturation starts to coun-
stops for the synapses projecting onto that neuron. Droppintgract the learning because saturation tends to drive the
the indexi we abbreviatel'=[J;;(1), ... ,Jn(t)], and the total  weight vector into a uniform equilibrium state in which any
synaptic strength onto neurdris written asJj=J'-g,1. The  synaptic structure acquired by the learning is flattened out.
set of patterng splits into the two subset§* andC~ com-  Fortunately, when the excitatory weight vector is close to the
posed of patterns which either activate or do not activatdypercube center, forgetting becomes negligible, while the
neuroni, &=1 or =0, respectively. effect of the learnindthe linear paftremains finite. Synaptic
saturation can therefore be controlled by choosing a small
scaling factorg which gates the dynamics of the expected
excitatory weight vector towards, but not on to, the center of

The general strategy of the convergence proof is to apthe hypercube. Far from the synaptic bounds learning is
proximate the discrete-valued synaptic dynamics by thelominated by the linear part, as in the classical perceptron
mean field dynamics with analog synaptic strengths, asearning without synaptic bounds, and the expected excita-
treated in[19,20. The “mean field” at timet is defined by  tory weight vector may converge towards a possible solution
the expectation valuggJ))) of the total synaptic weight vec- vector, ((J%) — oS+g,1. Of course, to prevent overshooting,
tor J'=J'-g,1 across all trajectorieﬁ' up tot’=t. As a first asmall threshold scaling factgralso requires a small learn-
step one proves that for tightly separated pattésnsall )  ing rated.
((J)y converges fot=1,2,... to ascaled solution vectaeS
separating the classe¥ and C~. The convergence is en- 2. Problem of synaptic correlations
forced by the “teacher” who “tells” whether the desired out-  There is a problem, though, with this strategy of proof
put (=1 or O could be reproduced by the neurdn which  pecause a description of the dynamicg(@) as a function
case no synaptic update occurs because the conditibhion  of the expected total currerith')) would require that the
Eq. (2) is not satisfiedior could not be reproduceéh which  rajectorieslt follow arbitrarily close the trajectory of(J%)
case a distorted fraction of the input pattefris added or  55'the network size increase. However, due to the stochastic-
subtracted to the expected weight vector, depending Ofy in the synaptic updates there are always trajectories which
whether the output should be 1 or 0, respectiyely strongly deviate from the meafand which actually do not

If there would be no syngptlc satura_tlon, the convergenc@onvergg, and only “typical” trajectoriest with typical syn-
{(J)— @S would follow as in the classical perceptron con- gptic updates may follow the med%) until convergence.
vergence proofsee, e.g.[21]; compare also Sec. IIIB4 Typical trajectories remain close to each other only if their
below. In the case of synaptic saturation, however, a distorsynapses are updated at exactly the same time steps. This is
tion of the expected update vector ariséise “forgetting”  pecause the stop-learning condition introduces correlations
pard Which_ drives the expected excitator)_/ weight Vector among the synaptic states which may sum up in time and
((39) steadily away from the boundary. Without the stop-pecome large. These correlations produce a variance in the
learning condition, when learning infinitely occurs, synapticigtg] postsynaptic curretf at timet which can be as large as
saturation drives this expected weight vector towards some IN+q, with gq=q* the learning rates), whereas without
asymptotic state where the learning effort is balanced by thgtop-learning condition the variancelihis bounded by 1M.
synaptic saturation. In the presence of the stopping condigych a variance is too large to be neglected because the total
tion, this asymptotic state may not be reached. Instead, aftgjumper of updates necessary for the convergence increases
a successful learning, the weight modifications stop when th@jith the inverse of the learning raté/q), and the expected
distribution of the postsynaptic currents is narrqwly clusterejeviations of the total postsynaptic current from the mean
around the neuronal threshold, with a peak just ab@ye 4 therefore accumulate throughout the learning process up
+8, and a peak just below,—&,. If the threshold scaling 15 1. The dynamics of(J!) can therefore only be described

factor ¢ is small, =06 and 5,=¢ are both small, and the py tracking subclasses of the full distribution of possible
final distribution of the postsynaptic currents will be close totrajectories.

0. This is only possible if most of the components(@f}))
become small. In fact, learning tightly separable patterns
drives the expected total weight vector towards the scaled _ ) -
solution vector,((J}>>:<<Jt>>—g|1—>QS% 0, such that after To take account o_f the s_ynapt_|c c_orrelatlons we part|t|(_)n
learning all the components components are sm&l)) thg space of all possible trajectories into supclasse; of_trajec-
~0. As a consequence, the expected excitatory weight vectdPries following the same update sequence, i.e., satisfying the
approaches the global inhibitory weight vect@dh)~g,1. same update inequalities imposed ohtoat any time step
If the global inhibitory strength is in the middle of the maxi- t'<t. Instead of tracing the meaf{J")) across all possible
mal and minimal synaptic strength,=0.5, learning pushes trajectories, we trace the individual mead$ across trajec-
the expected excitatory weight vector towards the center ofories of the same subclass. Restricted to such a subclass
the hypercube({(J")) —0.5. with the same update sequences, one can show that the “sub-
The benefit of choosing the global inhibition around 0.5 isclass variance” ofi' is small enough and, in fact, shrinks to
that both the synaptic saturatiamd the learning effort, are 0 asN becomes large. Our proof, however, moves along a
pushing the expected weight vector away from the boundarglightly different path. We show that with high probability an

1. Controlling synaptic saturation

3. Restriction of the synaptic dynamics to subclasses
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individual subclass mean uniformly converges within a finiteorder ofgN or even larger. Note that the expeciadbclass
time. By definition of the subclass, all trajectories simulta-transition at a specific synapge in the case of a single
neously satisfy or do not satisfy the update conditions, andrajectory in the subclass, is equal (tAJ})zAJ}:O or +1.
the dynamics of the subclass mean therefore stops if anQnly if there are many trajectories within a subclass, such
only if each individual trajectory within the subclass stops.that they are faithfully sampling the transition probability
Since the subclasses together cover all possible trajectoriest each synapse, will the expected transitions become small,
the convergence is assured with high probability for all tra-say (AJ)?<g*2, and[(AJ)| would be smaller than/2N.
jectories. The requirement of a large number of equivalent trajectories,
i.e., trajectories giving the same incremeniht
4. Convergence of each subclass mean =(1/N)Z;AJ;¢; and therefore staying in the same subclass, is
To prove the subclass convergence we show that each "édundancy requirement onto the synaptic encoding. We
time stept the subclass mead)) strictly moves with a mini- next show that with IargeN_the equivalent trajectories be-
mal positive step size towards the scaled solution veg®r COMES numerous anq that in each tS usz lass up tottimere
Since the initial distanclfd% - o9 is finite, the convergence '€ enough trajectories such tijedJ)|* is small.
with such strictly positive step sizes must stop. To show that
the distance fromJ}) to oS decreases each time step by a
minimal amount we have to show th@ the update vector
(AJY forms an angle strictly smaller than 90° with the direc-  To assure that most of the subclasses contain many trajec-
tion from (J}) to S, and that(2) the update vectofAJY) is  tories one might simply duplicate the synapses between in-
not too long(to prevent overshootingThe first requirement  dividual neurons, or equivalently, duplicate the neurons
directly follows from the learning rule when the saturation is Which encode an individual component of the patterns. How-
small: If the synaptic saturation in Eq2) would be ne- €Ver, such an explicit codng.schem.e is not necessary. In-
glected, the expected update vector would(hd=+qg,  Stead, the smaliness MA_Jt>|| is obtamed_ from increasing
depending on whether the condition for a long-term potenth® number ofpresynaptig neuronsN, while encoding the
tiation [LTP, upper line in Eq(2)] or a long-term depression P patterns such that t_he separation margatoes not shrink.
[LTD, lower line in Eq.(2)] is satisfied, respectively. In the TWO cases are considere) In the case that O”t'Y a few
case of LTP, e.g., the separability assumption states thayNapses satisfy the update condltlonggrfpo?and_h in the
£0S> 0(6+€)N and the condition oht in Eq. (2) states that learning rule[Eq. (2)], the subclass mea(rAJj>2 might still
N(ht)=(J) &< p6+05. Combining these two inequalities be tIazrge for these synapséperhaps even )l Bgt since
yields (0S-(J))qé= qoeN. The same estimate is also ob- (AJ;)*=0 for all other synapses which do not satisfy the up-

i H t\||2 3/2,
tained in the case of LTD. If we now take synaptic saturationd@te conditions, we obtaififAJ)[|*<g>*N. (2) In the case

into account, the expected update vector in case of LTP, e.ghat many synapses satisfy the update conditions, there will
becomes(AJYy=q&(1-(JY), and this can be written as Pe many different stochastic transitions with the same effect

<AJt>=q§t(1_g|1)_q§t<J}>. The additional factor(1-g,1) on the total postsynaptic current and therefore giving tra-

: . : jectories within the same subclass. Averaging over these
d0e§_ not harm since the components are identical. But thﬁany trajectories one gets also in this ¢ gt>||zg< N
additional forgetting part{AF)=-&(Jy=-¢(J'-g,1), may fiste) '

12 ;
well distort the update vector. Fortunately, the distortion i3S argued above. To ggt”N=gqeN as required above we

small if each component of the expected weight veibris need a second t|me' that the Iearmng rgtes small. We
. .. conclude that each time step the distance from the subclass
close tog,~0.5. Moreover, because of the negative sign in

N . ; i
front of §(J'-g,1), the forgetting part actively drive&l') mean <J'>T:.) the scl)lutlonss shrinks by at Iee;st a fixed
towards this hypercube center at 0.5 whénd-)~0. We amount. This completes the convergence proof.
conclude that for smalp (defining the final distance gt
from g,1, cf. Sec. lll B 1 aboveandg close to 0.5, the angle

6. Redundancy assures large subclasses and hence good
approximation of the dynamics by the subclass means

C. Classifying uncorrelated random patterns

between(J}) and oS is strictly below 90°, (QS—(Jf))qft To test the statements of the theorem we trained a single
=qpeN. It remains to be shown that the update vector isbinary perceptron with stochastic learning on random uncor-
short, more precisely, th§tAJ")|><qeeN. related binary patterns, as [&2]. In Fig. 1(a) we show the

number of iterations per pattern until learning for a fixed
5. Synaptic correlations are small within large subclasses ~ POStSynaptic neuron stops as a function of the number of
neuronsN of the input layer. We considerqu=10, 20, and
Unfortunately, the smallness of the expected chang@q random uncorrelated binary patterns, generated with a
KAJ|[? is not evident. It can be large if the synaptic corre- propapility of 1/4 for a neuron to be active. As expected, the
lations evoked by the update condition imposedfdrare finte size effects decrease with and the number of itera-
Strong. In faCt, due to this up,date Condition, a subclass dqions tend asymptotica"y to a value which depends 0n|y on
fined by an update sequenAé} up to timet could be com- the number of patterns. This is because the separation margin
posed of only a single trajectory. In this case the above normf the two classes decreases with increasing number of pat-
square would just count the number of synaptic transitions derns. Figure (b) shows, the number of iterations per pattern
time t, ||<AJt>||2:EJ-<AJ}>2:EJ-|AJ}|, and this can be in the needed for convergence as a function of the scaling faztor
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103 D. Classifying nonlinearly separable patterns with multiple
perceptrons

We also trained the perceptron on more complex, LATEX
deformed charactef§ig. 2(@)], preprocessed as ji2]. The
102 ] goal is to classify 32 nonlinearly separable patterns orga-
nized inn classegn=10-200. As the patterns are not lin-
early separable and therefore not classifiable by a single per-
ceptron, each class is learned by a group of ten independent
1 perceptrons. For each of the classes theN=2010 input
10 neurons project to all ten output neurons within the group.
o’ 10°

Iterations/pattern

Each output neuron of one specific group is trained to be
selective to the 32 patterns of one class. For example, during
the learning phase the first group of output neurons is acti-
vated(clamped to 1only when one of the 32 samples of the
letter “a” are presented. It is silefitlamped to O for any
other pattern. The second group of output neurons is trained
to respond only to “b”s, the third group to the “c”s, etc. All
the patterns are repeatedly presented in a fixed order, and
every time the synapses are randomly updated according to
the stochastic learning rule witlg*=q =0.01. Learning
might stop after a finite number of iteratiofesg., for a small
number of classgsor there might be always errors. In the
latter case the simulation is stopped after 300 repetitions per
pattern. In the test phase, only the presynaptic neurons are
clamped, and the activities of the output neurons are ob-

tained from thresholding the total postsynaptic currents. The
input pattern is classified by a majority rule: the group of
, ] neurons with the most active neurons determines to which
T class the input pattern is assigned. The neuronal threghold
2 01 ) ) ) is set to 5N, and the margin, for stopping the learning is
0.1 0.2 03 04 05 also 5N (corresponding to a difference of five neurprdn
Transition probability q (=q,=q ) average each pattern activates 50 neurons of the input layer,
but the coding levels vary over a wide ran@em 10 to 100

FIG. 1. Convergence time as a function of different parameters€Urons. o
(8) Number of iterations per pattern as a function of the number of Figures 2b) and Zc) show the distribution of the total

neuronsN for p=10, 20, and 40 uncorrelated random pattefps ~ POStsynaptic currents generated by the different patterns
=0.05,f=1/4,0=0.01); (b) Number of iterations per pattern as a across those output neurons which should get activatalati
function of the learning ratésynaptic transition probabilijyg and  line), and across those which should not get activated
the scaling factop. Convergence is only guaranteedifandg are  (dashed ling Before learning Fig. 2(b)] the two distribu-
small. Note that for small the convergence time only increases tions are very similar because the initial synaptic weights are
because the “step size” decreases, and not because the combinatandom and not correlated with the patterns. After learning
rial problem becomes difficult as is the case for laggand larged.  [Fig. 2(c)], they are well separated by the neuronal threshold,
allowing a classification without errors. In the present ex-
ample, learning converged because only a small number of
classes were usg@6 classes corresponding to the letters of
the alphabet Although the patterns are highly correlated,

1
(a) Number of neurons N

Scaling factor p

(b)

and the transition probabilitie3=q*=q~ for random uncor-
related binary patterng=210,N=100). If learning is too fast h v sl i | bl
or g is too large, the number of iterations grows very quicklyt ey are apparently still linearly separable.

and eventually becomes impossible to converge. Note that In the case of nonlinearly separablg patterns, the S't“a“of‘
IS more complex. When each pattern is presented for classi-

there is an optimal learning rate for each threshold. While 3 ~ation there are three possible outcom@sno output unit
Iarge_learning r"."te can prevent the CONVETgENCe, a Very SMay , tivated: the pattern isot classified (2) the majority of
learning rate will only SIOW_ down the learning process, aI'active output units belong to the correct class: the pattern is
though convergence remains guaranteed. The long CONVeLyrectly classified(3) the majority of active output units
gence time is due to the fact that there is a minimal dlstancgemng to the wrong class: the patternniisclassified The
from the initial weight vector to the set of possible solution regyits are shown in Fig. 3, where we plot the fraction of
vectors which needs to be crossed and which leads to a SCﬁlhiscIassifiec{a) and nonclassifieth) patterns as a function
ing of 1/q of the number of required iterations. The conver- of the number of classes. In the case shown in the figure, the
gence time also increases if the global inhibitory strerggth  fraction of misclassified patterns is very small compared to
approaches 0 or (not shown, but sefl9,20). the fraction of nonclassified patterns. The ratio between these
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( a) (b) h distributions before leaming (C) h distributions after learming
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FIG. 2. Classification of nonlinearly separable pattefas:Deformed LATEXcharacters used for the benchmark test. Left: prototype
letters; right: random sample of deformed letters; bottom: sample of deformed letters of clgsspi®tuced fronj12]). (b),(c) Distribu-
tions of the total postsynaptic curreritsevoked by the patterns belonging to the two different clagsesolid line, pooling together all
output units which should get activatemhdC™ (dashed line, pooling together all output units which should not get activateeraged over
the 26X 10 output neurons representing the letters of the alphabet in groups of 10. While before learning both classes evoked subthreshold
currents(b), the two classes are well separated after the traitéhgwith patternsé e C* evoking suprathreshold currerisolid line) and
patternsé e C~ evoking subthreshold currentdashed ling Vertical lines represent the neuronal thresh@jdflanked with the stop-learning
thresholdsf,* 6.

two quantities depends on the statistics of the patterns and dhe number of neurons increases, the separation méggin
the ratio betweerg* and q™. As the number of depressing must remain strictly positivéi.e., bounded away from)0
events (patterns which satisfy the condition for LJOn-  This is a form of redundancy which is necessary for learning
creases compared to the number of potentiating events, theith discrete synaptic weights. Together with the slow learn-
distribution of the total synaptic current drifts to lower val- ing, it represents the price for solving a combinatorially dif-
ues, thereby inactivating a larger number of output unitsficult task with a learning rule which is purely local in space
This increases the fraction of nonclassified patterns, but lowand time. This is consistent with the fact that the maximal
ers the fraction of misclassified patterns. The network bestorage capacity of networks with binary synapses is smaller
comes more undecisive, but also more reliable in the classthan the one for synapses with continuous weiglstise
fication task. [9,10] and Sec.). Moreover, the redundancy implies a solu-

tion of the original, NP-complete weight assignment problem

IV. DISCUSSION for classifying linearly separable patterns.

We have shown that any set of linearly separable patterns
can be learned by our local stochastic learning rule with B. Spike-driven stochastic implementation
discrete-valued synapses. The restriction of the synaptic plas- L . S
ticity to excitatory synapses makes global inhibition neces- 1he stochasticity in the synaptic modification is more than
sary. Moreover, a tight separation margin between the twdpst a_slowmg down of the Iear_nlng process. The stochastlc_
classes of patterns requires a small learning (ateple- selection of the synapses spatially decorrelates the synaptic
mented in the form of small synaptic potentiation and de-updates which in turn allows for an optimal redistribution of

pression probabilitiesand a small neuronal threshold. the synaptic resources and to classify nonlinearly separable
patterns.

The stochastic selection mechanism can be implemented
in terms of a detailed spike-driven synaptic dynamics by

In this paper we fix the learning rate and the neuronakxploiting the irregularity of the spike trains. A synaptic
threshold in advance, depending on the difficulty of the clasmodification, for instance, could only be triggered upon co-
sification task. However, they might also be adjusted byincidences of some pre- and postsynaptic spikes within a
some homeostatic mechanism operating during the learninfixed time window or by the accumulation of coincidences of
process. For instance, the threshold might slightly decrease fresynaptic spike and high postsynaptic depolarization
the clamped activity is not correctly predicted by the total[5,14,24,25%. The stopping mechanism can be implemented
postsynaptic current, and it might slightly increase in thein terms of these dynamic features of biological synapses
other cases. Note that decreasing the neuronal threshold [i26]. In all these cases the load of generating the noise to
equivalent to increasing all the excitatory synaptic weightsdrive the stochastic selection mechanism is transferred out-
as it arises in biological neurons through homeostatic plasside the synapse and is delegated to the collective behavior
ticity [23]. of the interacting neurons which may show highly irregular

The probability for the learning process to convergespiking patternd15]. By this “out-sourcing” of the noise-
within some fixed number of presentations increa@s1 generating machinery it becomes possible to control arbi-
—-1/N) as the number of neurorbl) tends to infinity. While trarily small transition probabilities.

A. Slow learning and redundancy
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@
n

class is usedn=20). The authors of12] need a complex
and unnatural boosting technique to achieve a comparable
performance. A first ingredient for our good performance re-
sides in the fact that each output unit experiences a different
realization of the stochastic process generated by the binary
1 random variableg when updating the synapsésee Eq.
(21)]. This means that each output unit will end up in clas-
sifying the patterns according to a different hyperplane.
/}—4 When the information of all output units is combined, the
& classification of nonlinearly separable patterns becomes pos-
sible. A weaker form of stochasticity which is based on the
guenched randomness of the connections is exploitEtin
A second ingredient for the good performance is related to
the read-out from the output units and depends on the statis-
tics of active output units: in order to read the relevant infor-
mation, only the output units with a reliable response should
; be considered for the majority evaluation, while the other
/ units should be silerand therefore will only contribute to a
] nonclassification, not to a misclassification, see Fjg.TBe
/ average fraction of active output neurons can be controlled
4 ] by changing the ratio betweeagt andq~, which in turn de-
termines the asymptotic distribution when learning cannot
// converge. The existence of an asymptotic distribution and a
fast convergence towards this distribution are guaranteed by
A the discreteness and the boundedness of the synapses. Al-
/ though we did not present a theory for multiple output units
] in the case of nonlinearly separable patterns, the above rea-
soning is proven to apply to a simplified scend@6]: when
0 50 100 150 200 250 contradictory patterns are presented., when the very same
Number of classes (32 pattems per class) pattern belongs to two different clasgebe output units will
be likely shut down, provided that the ratio of the effective
FIG. 3. (a) Fraction of misclassified patterfor which none of | TD rate G~ over the effective LTP ratg* is large enough.
then><10 output units is activateand(b) fraction of nonclassified  Thjs ratio in general will depend on the statistics of the pat-
patterns(for which the majority rule applied to the groups of tn tems and on the number of classes. The tuning of these ef-

output units gives the wrong classificatjoas a function of the  factive LTD and LTP rates might be realized by other mecha-
numbern of classes of preprocessed LATEXdeformed CharaCterSnisms like homeostatic plasticif23].

Each class contains 32 different pattefsse example of class “2”
in Fig. 2(a)]. Both fractions increase as a power law as the number D. Discrete versus continuous synapses

of classes increases. Note that the number of misclassified patterns For simplicity, but also because of the direct applications
is an order of magnitude smaller than the number of nonclassifieg0 :

. TN , learnable VLSI networks performing a memory task, we
patterns. The misclassification is kept small by exploiting the factWere focusing on the case of binary synapses. However, the
that the neurons tend to shut down when exposed to nonlinearlx h imilarly  hold . h. ’ |
separable patternsee Discussion Each point in the two panels onvergence t eorem similarly holds wit a general,
represents the average performance across ten different choices oglscrete-valued f|n|t_e _s_et of synapses, and even with d_lscrete-
classesn=10,20, ..., 200 as indicated on the abscissanfotoo  valued neuronal activities. Whether on the macroscopic level
and 200 we only chose two class $efEhe error bars indicate the SYnapses can be modified in discrete or continuous steps re-
standard deviation. mains to be further investigatdd]. Naturally, the synaptic
strengths are always bounded. Due to this boundedness, phe-
nomena such as balancing of excitation emerge during the
learning proces$20]. The same phenomena are also ex-

A single output neuron can only classify linearly sepa-pressed for the potentiation probabilities of finite, discrete-
rable patterns. However, when the stochastic learning rule igalued synapses. The main difference in terms of learning is
applied to a network of multiple output units, it becomesthat (finite) discrete-valued synapses require slower learning
possible to discriminate between patterns which are not linthan continuous-valuedbounded synapses. The slower
early separable. We showed that the classification perfolearning, on the other hand, is compensated by an increased
mances on a large complex data deATEXdeformed char- memory stability endowed by the discreteness of the synap-
acterg are surprisingly good, better than the ones of recentic states.
models which in general are more complex and require pa-
rameter tuning. For example the best performance on 293 ACKNOWLEDGMENTS
classes i12] is 60% correct, while in our case we have  This work was supported by SNF Grant No. 3152A0-
94.5% correct when the same numimeof output units per 105966/1, the Silva Casa Foundation, and European Union
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Grant No. IST-2001-38099 ALAVLSI. We would like to the patterné=¢ haveaN nonvanishing componenta is the
thank M. Mascaro for providing us with the dataset of pre-coding level of the patteinLet us assume thdtgives rise to
processed LATEXdeformed characters and for useful inspira stochasticupdate i.e., that the condition on the total
ing discussions about the role of the stopping condition. Wepostsynaptic currertt=(J—g,1)&/N in the learning rulg(2)
are grateful to E. Amaldi for discussions about NP-completds satisfied. Synapsgis selected with probabilitgé¢;. Let £
problems, and to an anonymous referee for many helpfube the vector indicating that synapsgot selected;=1) or

comments. not (;=0). The mean and variance df; are given by
(g =a¢ and var;j=q¢;(1-q&) <q¢;, respectively. A sto-
APPENDIX A: DIRECTED DRIFT FAILS chastic update vecto¢ is called typical if [17—1(())|

. . . <(g?/2)aN, i.e., if the number of selected synapses does not
A form of the present stochastic algorithigirected drify de(\(/]iate) t00 much from its expectation va)llue.pSin c60n

was studied if17], and arguments proving the convergence .
were given. However, the directed drift argument fails in the™ qaN and vaf1{)<qaN we conclude with the Chebyshev

way it is used in[17]. To expose the problem, and to moti- inequality that any randomly sampled update is typical with
vate the notions of typicality and redundancy introduced inProPapility larger than 1e, i.e.,

the formal convergence proof below, we present a simple G
example. Py 11— K = —aN
According to the directed drift argument the distarfide a
-9| from the synaptic state vectdtto the solution vectoB 4 var(1?) _ 4
would show a nonvanishing negative drift, and therefore =1- (qfaN)? =1-¢€, with fo:qs?\l’
would shrink to 0 with high probability within a fixed time. (B1)

Unfortunately, in general this is not true. Let us assume that

the single patterré=(1,...,1 with an even number oN  Where P denotes the probability measure {h 11N induced
components has to be learned with outgyt 1. Assuming a by P{f e {0, 1}V {i=1}=0q¢. A trajectory is called typical if
threshold 6,=1/2, a possible solution vector isS  each synaptic update is typical. The following property will
=(1,...,1,0,...,0, where the number of 1's iN/2. Letus  pe used several times in the sequel. ket[-1,1]N. By ap-
consider the SynaptiC Sta@:(l, A ,1,0, A ,m with a p|y|ng Chebyshev’s inequa"ty twice we get

slightly smaller numbeN/2-n of 1's, sayn=|eN] with some X

small e>0. This synaptic state leads to the independent sto- - ; _ q

chastic potentiation of synapskig2-n+1, ... N with prob- P{é 's typical andix =x(0)] < 2 aN}

ability g. In this example the distance frodhto Sincreases,

[J*1-g|>[Jt-9S|, with high probability. This is because =1- ZALM =1-2e,. (B2)
only a potentiation of the first fewn) synapsesN/2-n (q°aN)? °

+1,... N/2 bringsJ' closer toS, while the potentiation FNote that the factor of 2 arises because we require two con-
all the remaining(N/2) synapse$/2+1, = N movesJ ditions, |1¢- 1¢(0))| < (q%/2)aN as imposed inB1), and also
away fromS. If N>n the probability that): moves away |y — (/)| < (g?/2)aN. Each of these conditions is satisfied
from Sis therefore arbitrarily close to 1. with probability larger than 1e,

.

What is always true, however, is that teepectedveight

vector((J")) converges t&, provided thaq is small enough. 2. Trajectories with identical update sequences

In fact, the expected synaptic state at the next time step is . . .
(*=(1, ... ,1p’q’ o ,q)?/ anpd its distance t& is smaller P Each trajectond of (2) specifies a binary sequenagJ)

than the distance fromdt to S [[(J*)-S2=n(1-q)? vyith a(d)t=1 or O depending on Whgther or not the condi-
+(N/2)q2<||J'-S[2=n, provided thatq is smaller than 2 tion for a synaptic update oh' is satisfied. Let us choose

. . . some sequence! of 0's and 1’'s. Let7" denote the set of
Hence, the drift argument must be applied to the expectatlop ical traiectories] having the same Ltl date sequemca
values, and it has to be assured that the stochastic dynamic}/sp_ ] v 9 . P ) q P
closely follows the dynamics of the expectation values. Thid® imet, i.e., a(9)" =a" for t'=1, ... t. We will show that
is the case for typical sequences since, for fixezhd large therte is at, such that for alt>t, the setZ{" is either empty
N, the stochastically selected components are reliably sanfr @ =0, i.e., fort>1, no synaptic update takes place. Let us
pling the subsets of sizéN/2-n)/N, n/N, andN/(2N), re- ~ assume that the sef, and therefore als@,,, is not empty.
spectively. Beside this redundancy argument, the proof must L€t us assume that the condition éhfor a stochastic
deal with the problem of synaptic saturatigargetting, as it “tﬁ’fat? IS S;Eltl§fled, e, that= 1 Letus write(2) n the fotr_m
also arises in the case of bounded synapses with continuods =¥ *AJ with AX'=£x(1-J) if £ e C* andAJ'=—{=J'if

strengthg 20]. &eC . Here, %" denotes the componentwise product of
vectors. Let(J") be the expected synaptic strength across the
APPENDIX B: PROOF OF THE THEOREM trajectories in7y" at timet. Similarly, (AJY denotes the ex-

pected change ol' when averaging ovef;,,. We decom-
pose(AJY) into alinear part AL and aforgetting part AF.

Let us fix an arbitrary sequence of patterff@}—o1..  SettingJ,=J-g,1 and dropping the time index we obtain
which repeatedly cycles through thepatternsé e C*. Let  from (2);

1. Typical trajectories
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(L-g)XO) -, if&el
=g =({*J), ifEeC,
(B3)

where AF=—(¢*J,) and AL=(1-g,){{) or AL=-g,{{), de-
pending on whetheg e C* or £ e C7, respectively.

(AJ)ZAL+AF:{

3. Learning based on the linear part

PHYSICAL REVIEW E/1, 061907(2009

To estimatexC we write xC=(u{)-v({) with u=x*J, and
v=xx(J;). Note thafu;| <1 and|v;|<1. For a typical update
we get from(B2) that|v—v{(¢))| < (g?/2)aN with probabil-
ity larger than 1-2,. Averaging again over the ensemble
Tt.1 gives with probability larger than 1 -2

q2
[v(0) = ()] < ~aN. (B9)

According to the update and separability condition for theSimilarly, we get from(B2) that |uZ-u(() <g?/2aN with

casef e C* we haveé], < p(0+ 8N and £EoS> p(6+ 5+ €)N,
respectively, and thereforepS-J))é=peN. Similarly, for
the casef e C” we have the two condition&G, > p(6- 5N
and £0S< p(0-6-¢)N, respectively, and therefore(eS
=J))é=peN. We thus obtain

(0S-J)(£8) = eeN,

Averaging this inequality over the ensemblg yields
(0S—(J)) () = peN, depending on whethefis in classC*

for £ e C*. (B4)

probability larger than 1-&,. Since (uy=v we obtain by

averaging(u?)—v{{(£))| < (g?/2)aN. Combining this inequal-
ity with (B9) yields for a typical update with probability
larger than 1-4,:

xC| = (ud) - v({)| < g?aN. (B10)

5. When forgetting supports learning
In the case of|\(¢)*(3))]|= e[ \()* S| one immediately

or C7, respectively. This is correct because averaging is Yets from (B8) and (B10) that xAF =—g?aN. Since (AJ)

convex operation. In particular, setting=0S-J, we have
(yé)=min(yé)=peN. Let us abbreviatex=pS-(J;). Since
(£))=qé¢ and({({;»=q for aN components we conclude that

+x({0)) = pgeaN, for & e C*. (B5)

Note that({.)) denotes the average over the whole ensemble

of possible updatesat timet. We would like to replacé(?))

in the above estimate k), where the latter average is taken

over the ensembl@f;,. Since|x;|<1 we can combingB2)

and(B5). For a typical update we therefore have with prob-

ability larger than 1-2,;

qe

+X{ = N-—aN=qgaN -—|=-—eaN
X{ = poqgea 2a qgaN| ge > 5 eaN,

(B6)

provided q= ge. Averaging over7;,, we obtain from(B6)
that with probability larger than 1-€2;

X0 = %eaN, for £ e C*. (B7)

To get an upper bound fo#, we first note thatoS-J|
<1, and conclude froniB4) that a= ge. With the expres-
sion for ¢, given in (B1) we obtaine,<4/(q%0eN).

4. Controlling the forgetting part

To control the effect of the forgetting term we write~
=~({*J)=~*(3)~C with C=({*J)=()*(Jp). Setting
x=0S—(J,), inserting the expression fa&F and applying the
Cauchy-Schwartz inequalityxy<|[x|| [ly|, with equality if
and only if x=y) we get

XAF = (3)((0) * (I)) = @S * (I) =xC
= (W0 * @)%~ ([ * () * (3)) - xC

= [N(D * GIINKD = (3]l - el (D) = S) - xC.
(B8)

=AL+AF we obtain together witliB7) that with probability
larger than 1-6;

X(AJ) = an(%@— q) = %@aN, (B11)

Brovided  that |\(0)(3)]|=ell\()*S| and q=(e/4)eg;
Recall thatg;=min{g,,1-g,}-

6. When forgetting counteracts learning

Let us now assume th&t/(&)=(3)) < ¢[\(& 9. Setting
y=S*S we conclude fromB2) that with probability larger
than 1-2,:

2

NG # S2=y(&) =< y(0) + S aN=gaNL +/2).

From (B8 and (B10) we therefore get xAF=

-07|\(O*g>-xC=-qaN(2¢?+q). Since (AJ)y=AL+AF

we obtain together witkB7) that with probability larger than
1-4e,,

x(AJ) = an(%e@— (20%+ q))
e €o_
=qeaN Zgl -2¢|+gaN Zgl -q

> %e@aN, (B12)

provided that|\()*(3)|<el\{0)*S|, e<(e/16)g andq
<(ep/8)g,.

7. Equivalent updates within a subclass

We next show thafl(AJ)||? is bounded byg®?N. Since
AJ=¢*(1-J) and AJ=-¢=J for &eC*, respectively, we
have [(AJ)|2<|(O)|>. We will show that the expectation
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value(¢;) is in the order ofg for most componentg. o 1 1

To give such an upper bound f¢f;) across the trajecto- with'&, = q?“m = q5_N (B14)
ries in 7,, we exploit the synaptic redundancy according to . ) o
which many different synaptic statek? lead to the same The probability that an update is typical in the senseBdf),
total postsynaptic currefit*=(1/N)Jt**&*2, Let us consider and that it satisfie¢B14), is larger than 1<,~€, By defi-
the case of a synaptic potentiation at tiehe case of a Nition of z we havez({))=<daN, and formula(B14) states
depression being treated similarly. The states of the trajectdhat with this high probability
ries Je 7y, at time t+1 then have the fornd™!=J'+AJ A = 22= (1 -3 = &) ¢ < gaN(L +q) < 243N
with AJt=/#(1-2Y. Let 2% be the set of update vectofsat
time t corresponding to the trajectories #f,,. This is the (B15)
ensemble over which the expectation va{deis taken. We By definition of 24(1) we havez{=I for { e 24(1), and we
decomposez into the subset€7 of updates, starting from  conclude from(B15) that with the same high probability
a fixed stateJ' at timet. This set is further decomposed into < 2¢aN if the set Z5(l) is non-empty. In this case we can
sets ofequivalentupdate vectorg giving the same total \yrite 25(1)={¢ {0, 1N|£z=1} and drop the constraint af
currenth™, Z3()={ e Z5|AJ¢"1=1} for e N. By apply- ¢ 22 This is becaus&(l) is either empty, or the condition
ing twice the convexity of the averaging process we getz=| already implies thaf e Z5. Hence,Z{(1) consists of all
(gy=max (Zp,<max; (), where the different brackets pinary vectors which have exactly<2gaN 1's among the
(), (D3 and () =(.),, refer to the expectation values acrosszN nonvanishing components af Since the individual vari-
z«, 23, and Z§(l), respectively. ables; are stochastically independent, the relative frequency

To estimate({;), we first note that/; at timet does not  of ¢;=1 for a fixedj across the se£{(l) is thereforel /(@N).
affect the total postsynaptic curreht if synapsej is al-  This is the desired redundancy according to which different
ready potentiatedl}: 1. For such componenjghe condition  synaptic update vectoislead to the same total postsynaptic
{ e Z5(1) therefore does not represent any restriction on theurrenth'*!. Sincea>0 we conclude that with probability
value ofj, and the average acrogg(l) is the same as the larger than 1,~¢, we have forj e Z;:
average across all realizatior(g;) =((£;))=0q, provided that | 2qEN
Z4(1) # 0. If these componentsare humerous we conclude Uh=zc=——=20. (B16)
that [()]|><g®?N. If they are not numerous, we will use the aN aN

redundancy argument to show thd}), is small. This leads Since forj e Z, the value of; does not affech*! we again

to the following case distinctiondl) and (2). have () =((¢j))=q for these components as explained
above. Together withB16) we get that(j) <max(¢),
8. Equivalent updates provide redundancy <2q for any componenf, and thereforg(AJ%)[[*< (O

<40?N. If we assume thafj<1/16 we obtain together with
(B13) that, independent cf, we have with probability larger
than 1-€,~¢,

Setz=(1-JY*&** and letZ,,, be the set of componengs
with z=1 or z=0, respectively. LeEN be the number of
components inZ,, i.e., the number of components which

may have been potentiated at tihéJt=0), and which are KA < K> < g*'*N. (B17)
activated by the pattern at tinte 1 (§}+ =1). Only for these
components will the state of the random variaflat timet 9. Learning in the general case stops

have the chance to affect the total postsynaptic cuéht
We consider the two partially overlapping casés), a
<g*41-q"?)/(1-q?), and(2), 2=

(1) In the first case, whe@<qg>3(1-q*?)/(1-¢?), we
have(¢;)=((¢;»=q for the numerous componenis: 7, as
outlined above, and triviallyZ;) <1 for j € Z,. We therefore

We finally show that the distance frold,) to ¢S de-
creases with each synaptic update at least by some fixed
quantity. Lett, denote the tim@) when patterné is pre-
sented and the synapses are upddtéd=1). At a subse-
quent time step, + 1 there i(Jj+**)=(Jj») +(AJ'%). Recalling
the abbreviationxtﬂ:QS—(J}#) and combining(B11) and

obtain (B12) we estimatex'»(AJw)=qeeg,aN/8 with probability
AR < 2 < q2(1 -F)N+3N < 23N, larger than 1-6,. ~\/Vith (B17) we obtain with probability
KA < K" < (1 -aIN+aN <q larger than 1-2.-%.
21-q"? [ 2 = 2 = = 2x (AT + (AT
ided thafd < ¢*2 . B13 — _
provided thafi < q - (B13) < gN(qM2 - pegjald) < - qoegaN'8,

(2) In the second case, whé@® ¢, we again engage the (B18)
fcypicality of an updaj[e. Sinc'e V&) < gaN we have accord- provided thatql2< pega/8. Since we may safely assume
ing to Chebyshev’s inequality, analogously(&2) that the coding level of a pattern is larger than the scaled

separation margin paramete&= ge, this and the previous
Pllzt - 2(0)| < oZEN} = 1 - Va;(ZOZ ~1-%, conditions ong are satisfied ifg=<[(e€)?g,/8]%. Recall that
(g7aN) we also requirep < eg,/16.
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We next sum up the contributions of all the updates up<0 aftern,>n,=8/(qg,(0€)? updates. Since this is not pos-

to time t evoked by the different patterns(J)=J°
+2tr<t<AJtL>. Applying iteratively estimatéB18), and using
agaTn thata= pe, we obtain that with probability larger than
1_nt(760+~60):

0 =< x> < X - nq(ee)’gN/8, (B19)

where n; is the number of synaptic updates up to tiie
presentation of a pattern. Singe”|=|leS-J?<N we get
from (B19) that with high probability we would havis|?

sible we conclude that with high probability there cannot be
more tham, synaptic updates, i.ea!=0 for all t larger than
t,=pn,, provided7{ is not empty. The estimatg=pn, holds
because within each cycle there is at least one of the tqtally
patterns which leads to a synaptic update—otherwise the pat-
terns would have been already learned. Hence, the trajecto-
ries become stationary with high probability after at letgst
time steps. Since,<4/(qceN) ande,<1/(g°N) the prob-
ability of not converging aften, updatedt, time stepgis in

the order ofO(1/N).
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